Skip to main content

Distributed Interference Mitigation in Time-Varying Radio Environment

  • Chapter
  • First Online:
Game-theoretic Interference Coordination Approaches for Dynamic Spectrum Access

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 463 Accesses

Abstract

Currently, most existing studies on the problem of interference mitigation, e.g., J. Huang, R. Berry, M. Honig, IEEE J. Sel. Areas Commun. 24(5), 1074–1084 (2006), R. Menon, A.B. MacKenzie, J. Hicks et al. IEEE Trans. Commun. 57(4), 1087–1098 (2009), R. Menon, A.B. MacKenzie, R.M. Buehrer et al. IEEE Trans. Commun. 57(10), 3078–3091 (2009), N. Nie, C. Comaniciu, Mob. Netw. Appl. 11(6), 779–797 (2006), Q.D. La, Y.H. Chew, B.H. Soong, IEEE Trans. Vehic. Technol. 60(7), 3374–3385 (2011), C. Lăcătuş, C. Popescu, IEEE J. Sel. Topics Signal Process 1(1), 189–202 (2007), Q. Yu, J. Chen, Y. Fan, X. Shen, Y. Sun, Multi-channel assignment in wireless sensor networks: A game-theoretic approach, Q. Wu, Y. Xu, L. Shen, J. Wang, IEEE Commun. Lett. 16(7), 1041–1043 (2012), B. Babadi, V. Tarokh, IEEE Trans. Inf. Theory 56(12), 6228–6252 (2010), J. Wang, Y. Xu, Q. Wu, Z. Gao, Trans. Emerg. Telecommun. Technol. 23(4), 317–326 (2012), [110], have assumed that the interference channel gains are static. Based on such an ideal assumption, there are several nongame theoretic J. Huang, R. Berry, M. Honig, IEEE J. Sel. Areas Commun. 24(5), 1074–1084 (2006), B. Babadi, V. Tarokh, IEEE Trans. Inf. Theory 56(12), 6228–6252 (2010), [1, 9] and game-theoretic R. Menon, A.B. MacKenzie, J. Hicks et al. IEEE Trans. Commun. 57(4), 1087–1098 (2009), R. Menon, A.B. MacKenzie, R.M. Buehrer et al. IEEE Trans. Commun. 57(10), 3078–3091 (2009), N. Nie, C. Comaniciu, Mob. Netw. Appl. 11(6), 779–797 (2006), Q.D. La, Y.H. Chew, B.H. Soong, IEEE Trans. Vehic. Technol. 60(7), 3374–3385 (2011), C. Lăcătuş, C. Popescu, IEEE J. Sel. Topics Signal Process 1(1), 189–202 (2007), Q. Yu, J. Chen, Y. Fan, X. Shen, Y. Sun, Multi-channel assignment in wireless sensor networks: A game-theoretic approach, Q. Wu, Y. Xu, L. Shen, J. Wang, IEEE Commun. Lett. 16(7), 1041–1043 (2012), J. Wang, Y. Xu, Q. Wu, Z. Gao, Trans. Emerg. Telecommun. Technol. 23(4), 317–326 (2012), [28, 10] interference mitigation approaches. However, the assumption of static channels is not true since they are always time-varying in practice, which is the inherent feature of wireless communications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Huang, R. Berry, M. Honig, Distributed interference compensation for wireless networks. IEEE J. Sel. Areas Commun. 24(5), 1074–1084 (2006)

    Article  Google Scholar 

  2. R. Menon, A.B. MacKenzie, J. Hicks et al., A game-theoretic framework for interference avoidance. IEEE Trans. Commun. 57(4), 1087–1098 (2009)

    Article  Google Scholar 

  3. R. Menon, A.B. MacKenzie, R.M. Buehrer et al., Interference avoidance in networks with distributed receivers. IEEE Trans. Commun. 57(10), 3078–3091 (2009)

    Article  Google Scholar 

  4. N. Nie, C. Comaniciu, Adaptive channel allocation spectrum etiquette for cognitive radio networks. Mob. Netw. Appl. 11(6), 779–797 (2006)

    Article  Google Scholar 

  5. Q.D. La, Y.H. Chew, B.H. Soong, An interference-minimization potential game for OFDMA-based distributed spectrum sharing systems. IEEE Trans. Vehic. Technol. 60(7), 3374–3385 (2011)

    Article  Google Scholar 

  6. C. Lăcătuş, C. Popescu, Adaptive interference avoidance for dynamic wireless systems: A game-theoretic approach. IEEE J. Sel. Topics Signal Process 1(1), 189–202 (2007)

    Article  Google Scholar 

  7. Q. Yu, J. Chen, Y. Fan, X. Shen, Y. Sun, Multi-channel assignment in wireless sensor networks: A game theoretic approach, in Proceedings of the INFOCOM ’10, pp. 1–9 (IEEE, New York, March 2010)

    Google Scholar 

  8. Q. Wu, Y. Xu, L. Shen, J. Wang, Investigation on GADIA algorithms for interference avoidance: A game-theoretic perspective. IEEE Commun. Lett. 16(7), 1041–1043 (2012)

    Article  Google Scholar 

  9. B. Babadi, V. Tarokh, GADIA: A greedy asynchronous distributed interference avoidance algorithm. IEEE Trans. Inf. Theory 56(12), 6228–6252 (2010)

    Article  MathSciNet  Google Scholar 

  10. J. Wang, Y. Xu, Q. Wu, Z. Gao, Optimal distributed interference avoidance: Potential game and learning. Trans. Emerg. Telecommun. Technol. 23(4), 317–326 (2012)

    Article  Google Scholar 

  11. Q. Wu, Y. Xu, J. Wang, L. Shen, J. Zheng, A. Anpalagan, Distributed channel selection in time-varying radio environment: Interference mitigation game with uncoupled stochastic learning. IEEE Trans. Vehic. Technol. 62(9), 4524–4538 (2013)

    Article  Google Scholar 

  12. L. Cao, H. Zheng, Distributed rule-regulated spectrum sharing. IEEE J. Sel. Areas Commun. 26(1), 130–145 (2008)

    Article  Google Scholar 

  13. L. Garcia, K. Pedersen, P. Mogensen, Autonomous component carrier selection: Interference management in local area environments for LTE-advanced, in IEEE Communications Magazine, pp. 110–116 (2009)

    Google Scholar 

  14. N. Bambos, Toward power-sensitive network architectures in wireless communications: Concepts, issues, and design aspects. IEEE Personal Commun. 5(3), 50–59 (1998)

    Article  Google Scholar 

  15. G. Stuber, Princ. Mob. Commun., 2nd edn. (Kluwer Academic Publishers, Norwell, 2001)

    Google Scholar 

  16. L. Law, J. Huang, M. Liu, S.R. Li, Price of anarchy for cognitive MAC games, in Proceedings of the IEEE GLOBECOM (2009)

    Google Scholar 

  17. D. Monderer, L.S. Shapley, Potential games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Marden, G. Arslan, J. Shamma, Joint strategy fictitious play with inertia for potential games. IEEE Trans. Autom. Control 54(2), 208–220 (2009)

    Article  MathSciNet  Google Scholar 

  19. Y. Xu, J. Wang, Q. Wu et al., Opportunistic spectrum access in cognitive radio networks: Global optimization using local interaction games. IEEE J. Sel. Topics Signal Process 6(2), 180–194 (2012)

    Article  Google Scholar 

  20. K. Verbeeck, A. Nowé, Colonies of learning automata. IEEE Trans. Syst., Man, Cybern. B 32(6), 772–780 (2002)

    Article  Google Scholar 

  21. P. Sastry, V. Phansalkar, M. Thathachar, Decentralized learning of nash equilibria in multi-person stochastic games with incomplete information. IEEE Trans. Syst., Man, Cybern. B 24(5), 769–777 (1994)

    Article  MathSciNet  Google Scholar 

  22. Y. Xu, J. Wang, Q. Wu et al., Opportunistic spectrum access in unknown dynamic environment: A game-theoretic stochastic learning solution. IEEE Trans. Wirel. Commun. 11(4), 1380–1391 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Xu, Y., Anpalagan, A. (2016). Distributed Interference Mitigation in Time-Varying Radio Environment. In: Game-theoretic Interference Coordination Approaches for Dynamic Spectrum Access. SpringerBriefs in Electrical and Computer Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-0024-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0024-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0022-5

  • Online ISBN: 978-981-10-0024-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics