Skip to main content

Culturally-Responsive Pedagogy in Science Education

Narrowing the Divide between Indigenous and Scientific Knowledge

  • Chapter
The World of Science Education

Abstract

African Indigenous Knowledge System (IKS) is the body of knowledge embedded in the African ways of knowing and social practices which have been in existence and have evolved over the past many thousands of years. Within the sub-Sahara African region, IKS could provide alternative ways to promote sustainable development in poor rural communities (Briggs, 2005) – the challenge is on how to promote IKS within the communities, particularly among the younger generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikenhead, G. (2002). Whose scientific knowledge? The colonizer and the colonized. In W. M. Roth & J. Desautels (Eds.), Science education as/for sociopolitical action (pp. 151–166). New York, NY: Peter Lang.

    Google Scholar 

  • Aikenhead, G. S. (1997). Toward a first nations cross-cultural science and technology curriculum. Science Education, 81(2), 217–238.

    Article  Google Scholar 

  • Aikenhead, G. S., & Jegede, O. J. (1999). Cross-cultural science education: A cognitive explanation of a cultural phenomenon. Journal of Research in Science Teaching, 36(3), 269–287.

    Article  Google Scholar 

  • Akbari, R. (2007). Reflections on reflection: A critical appraisal of reflective practices in L2 teacher education. System, 35(2), 192–207.

    Article  Google Scholar 

  • Atwater, M. M. (1996). Social constructivism: Infusion into the multicultural science education research agenda. Journal of Research in Science Teaching, 33(8), 821–837.

    Article  Google Scholar 

  • Battiste, M. (2005). Indigenous knowledge: Foundations for first nations. World Indigenous Nations Higher Education Consortium-WINHEC Journal.

    Google Scholar 

  • Billig, M. (1987). Arguing and thinking: A rhetorical approach to social psychology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Boulter, C. J., & Gilbert, J. K. (1995). Argument and science education. In P. S. M. Costello & S. Mitchell (Eds.), Competing and consensual voices: The theory and practice of argumentation (pp. 84–98). Clevedon: Multilingual Matters.

    Google Scholar 

  • Breidlid, A. (2002). Schooling, tradition and modernity in South Africa. UWC papers in Education, 2, 37–50.

    Google Scholar 

  • Breidlid, A. (2003). Ideology, cultural values and education: A critical analysis of curriculum 2005 in South Africa. Perspectives in Education, 2, 83–103.

    Google Scholar 

  • Breidlid, A. (2008). Education, indigenous knowledge and sustainable development in an African context. In B. Brock & G. Garbo (Eds.), Language and power: The implications of language for peace and development (pp. 232–239). Oxford: African Books Collective.

    Google Scholar 

  • Breidlid, A. (2009). Culture, indigenous knowledge systems and sustainable development: A critical view of education in an African context. International Journal of Educational Development, 29(2), 140–148.

    Article  Google Scholar 

  • Briggs, J. (2005). The use of indigenous knowledge in development: Problems and challenges. Progress in development: Problems and challenges. Progress in Development Studies, 5(2), 99–114.

    Article  Google Scholar 

  • Brookfield, S. D. (1995). Becoming a critical reflective teacher. San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Bulgren, J. A., & Ellis, J. D. (2012). Argumentation and evaluation intervention in science classes: Teaching and learning with Toulmin. In M. S. Khine (Ed.), Perspectives on scientific argumentation: Theory, practice, and research (pp. 135–154). New York, NY: Springer.

    Chapter  Google Scholar 

  • Carlo, D. P., Hinkhouse, H., & Isbell, L. (2010). Developing a reflective practitioner through the connection between educational research and reflective practices. Journal of Science Education Technology, 19(1), 58–68.

    Article  Google Scholar 

  • Cobern, W. W., & Loving, C. C. (2001). Defining “science” in a multicultural world: Implications for science education. Science Education, 85(1), 50–67.

    Article  Google Scholar 

  • Colbourne, L., & Sque, M. (2004). Split personalities: Role conflict between the nurse and the nurse researcher. Nursing Times Research, 9(4), 297–304.

    Article  Google Scholar 

  • Department of Education. (2003). National curriculum statement grades 10–12 (general). Learning programme guidelines life sciences. Government Printers. Pretoria. Republic of South Africa.

    Google Scholar 

  • Department of Education. (2005). National curriculum statement grades 10–12 (general). Learning programme guidelines physical sciences 29 April 2005. Government Printers. Pretoria. Republic of South Africa.

    Google Scholar 

  • Department of Science and Technology. (2004). Indigenous knowledge systems policy. Pretoria: Government Printers.

    Google Scholar 

  • Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576.

    Article  Google Scholar 

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of argumentation in classrooms. Science Education, 84(3), 287–312.

    Article  Google Scholar 

  • Duschl, R. A. (2007). Quality argumentation and epistemic criteria. In Argumentation in science education (pp. 159–175). Dordrecht, The Netherland: Springer Netherlands.

    Chapter  Google Scholar 

  • Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39–72.

    Article  Google Scholar 

  • Engida, T. (2002). Reflections on African science education for the new millennium: The case of the Ethiopian chemistry curriculum for beginners. International Journal of Science Education, 24(9), 941–951.

    Article  Google Scholar 

  • Erduran, S. (2006). Promoting ideas, evidence and argument in initial teacher training. School Science Review, 87(321), 45–50.

    Google Scholar 

  • Erduran, S. (2008). Methodological foundations in the study of argumentation in science classrooms. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from science-based research (pp. 47–70). London: Springer.

    Google Scholar 

  • Erduran, S., Simon, S., & Osborne, J. (2004). Tapping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88(6), 915–933.

    Article  Google Scholar 

  • George, J. M. 1999. Indigenous knowledge as a component of the school curriculum. In L. M. Semali &J. L. Kincheloe (Eds.), What is indigenous knowledge? Voices from the academy. New York &London: Falmer Press.

    Google Scholar 

  • Grange, L. (2007). Integrating western and indigenous systems: The basis for effective science education in South Africa? International Review of Education, 53(5–6), 577–591.

    Article  Google Scholar 

  • Hoppers, O. (2005). Culture, indigenous knowledge and development: The role of the University (Occasional Paper no. 5, pp. 1–50). Johannesburg: Centre for Education Policy Development (CEPD).

    Google Scholar 

  • Horsthemke, K. (2008). The idea of indigenous knowledge. Archaeologies: Journal of World Archaeological Congress, 4(1), 129–143.

    Article  Google Scholar 

  • Hountondji, P. J. (2002). Knowledge production in post-colonial context. In C. O. Hoppers (Ed.), Indigenous knowledge and integration of knowledge systems (pp. 23–39). Claremont, Cape Town: New Africa Books.

    Google Scholar 

  • Jegede, O. J. (1995). Collateral learning and the eco-cultural paradigm in science and mathematics education in Africa. Studies in Science Education, 25, 97–137.

    Article  Google Scholar 

  • Jegede, O. J. (1997). School and science and the development of scientific culture: A review of contemporary science education. International Journal of Science Education, 19(1), 1–20.

    Article  Google Scholar 

  • Jegede, O. J. (1999). Science education in non-western cultures: Towards a theory of collateral learning. In L. M. Semali & J. L. Kincheloe (Eds.), What is indigenous knowledge? Voices from the academy (pp. 119–142). New York, NY & London: Falmer Press.

    Google Scholar 

  • Jegede, O. J., & Aikenhead, G. S. (1999). Transcending cultural borders: Implications for science teaching. Research in Science & Technological Education, 17(1), 45–66.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from science-based research (pp. 3–27). London: Springer.

    Google Scholar 

  • Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757–792.

    Article  Google Scholar 

  • Killion, J., & Todnem, G. (1991). A process for personal theory building. Educational Leadership, 48(6), 14–16.

    Google Scholar 

  • Kssnorr-Cetina, K. (1999). Epistemic cultures: How the sciences make knowledge. Cambridge MA: Harvard University Press.

    Google Scholar 

  • Krummheur, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), Emergence of mathematical meaning. Hillside, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Kuhn, D. (1992). Thinking argument. Harvard Educational Review, 62(2), 155–178.

    Article  Google Scholar 

  • Kuhn, D. (1993). Science as an argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319–337.

    Article  Google Scholar 

  • Larivee, B. (2000). Transforming teaching practice: Becoming the critically reflective teacher. Reflective Practice: International and Multidisciplinary Perspectives, 1(3), 293–307. (Routledge: Taylor and Francis Group.)

    Google Scholar 

  • Loughran, J. J. (2002). Effective reflective practice: In search of meaning in learning about teaching. Journal of Teacher Education, 53(1), 33–43.

    Article  Google Scholar 

  • Maila, M. W. & Loubser, C. P. (2003). Emancipatory indigenous knowledge systems: Implications for environmental education in South Africa. South Africa Journal of Education, 23(4), 276–280.

    Google Scholar 

  • Martin, M. O. (2000). TIMSS 1999-International science report: Findings from IEA’s repeat of the third international mathematics and science study at the eighth grade. International Study Center.

    Google Scholar 

  • Meyers, G. (1990). Writing biology: Texts in the social construction of scientific knowledge. Madison: University of Wisconsin Press.

    Google Scholar 

  • Munby, H., & Russell, T. (1990). Metaphor in the study of teachers’ professional knowledge. Theory into Practice, 29(2), 116–121.

    Article  Google Scholar 

  • Munford, D., & Zembal-Saul, C. (2002). Learning science through argumentation: Prospective teachers’ experiences in an innovative science course. A paper presented at the 2002 annual meeting of the National Association for Research in Science Teaching (NARST), New Orleans, LA.

    Google Scholar 

  • National Curriculum Statement. (2002). Department of Education. South Africa.

    Google Scholar 

  • Nelson-Barber, S., & Estrin, E. T. (1995). Culturally responsive mathematics and science education for native students. San Francisco, CA: Far West Laboratory for Education Research and Development.

    Google Scholar 

  • Ninnes, P. (1994). Towards a functional learning system for Solomon Islands secondary science classrooms. International Journal of Science Education, 16(6), 677–688.

    Article  Google Scholar 

  • Ninnes, P. (2000). Representations of indigenous knowledges in secondary school science text books in Australia and Canada. International Journal of Science Education, 22(6), 603–617.

    Article  Google Scholar 

  • Ntuli, P. (1999). The missing link between culture and education: are we still chasing gods that are not our own? In M. W. Makgoba (Ed.), African Renaissance. Cape Town: Mafube-Tafelberg.

    Google Scholar 

  • Ntuli, P. (2002). Indigenous knowledge systems the renaissance. In O. Hoppers. C. A. (Ed.), Indigenous knowledge and the integration of knowledge systems. New Africa Books. Claremont, Cape Town.

    Google Scholar 

  • Nwagwu, E. W. (2007). Creating science and technology information databases for developing and sustaining sub-Saharan Africa’s indigenous knowledge. Journal of Information Science, 33(6), 737–751.

    Article  Google Scholar 

  • Ogawa, M. (1995). Science education in a multiscience perspective. Science Education, 79, 593–593.

    Article  Google Scholar 

  • Ogunniyi, M. B. (1988). Adapting Western science to traditional African culture. International Journal of Science Education, 10(1), 1–9.

    Article  Google Scholar 

  • Ogunniyi, M. B. (2000). Teachers’ and pupils’ scientific and indigenous knowledge of natural phenomenon. Journal of the Southern African Association for Research in Mathematics, Science & Technology Education, 4(1), 70–77.

    Google Scholar 

  • Ogunniyi, M. B. (2004). The challenge for preparing and equipping science teachers in higher education to integrate scientific and indigenous knowledge system for their learners. South African Journal for Higher Education, 18(3), 289–304.

    Google Scholar 

  • Ogunniyi, M. B. (2007). Teachers’ stances and practical arguments regarding a science-indigenous knowledge curriculum: Part 2, International Journal of Science Education, 29(10), 963–986.

    Article  Google Scholar 

  • Ogunniyi, M. B. (2009). Implementing a science-indigenous knowledge curriculum: The Western Cape experience. Second National Workshop on Science and Indigenous Knowledge Systems (pp. 1–9). University of the Western Cape, RSA.

    Google Scholar 

  • Ogunniyi, M. B., & Ogawa, M. (2008). The prospects and challenges of training South African and Japanese educators to enact an indigenised science curriculum. South African Journal of Higher Education, 22(1), 175–190.

    Article  Google Scholar 

  • Onwu, G., & Mosimege, M. (2004). Indigenous knowledge systems and science and technology education: A dialogue. African Journal of Research in Mathematics, Science and Technology Education, 8(1), 1–12.

    Article  Google Scholar 

  • Otulaja, F. S., Cameron, A., & Msimanga, A. (2011). Rethinking argumentation-teaching strategies and indigenous knowledge in South African science classrooms. Cultural Studies of Science Education. doi:10.1007/s1142

    Google Scholar 

  • Owuor, J. A. (2007). Integrating African indigenous knowledge in Kenya’s formal education system: The potential for sustainable development. Journal of Contemporary Issues in Education, 2(2), 21–37.

    Google Scholar 

  • Pawan, F. (2003). Reflective teaching online. TechTrends, 47(4), 30–34.

    Article  Google Scholar 

  • Raza, G., & Du Plessis, H. (2004). Indigenous culture as a knowledge system. Tydskrifvirletteerkunde, 41(2), 85–98.

    Google Scholar 

  • Reddy, V. (1999). Mathematics and science achievement at South African Schools in TIMSS 2003. IEA TIMSS 2003. HSRC Press.

    Google Scholar 

  • Richard, A. D., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39–72.

    Article  Google Scholar 

  • Semali, L. M., & Kincheloe, J. L. (1999). What is indigenous knowledge? Voices from the academy. New York, NY & London: Falmer Press.

    Google Scholar 

  • Siegel, H. (2001). Incommensurability, rationality and relativism: In science, culture and science education. In P. Hoyningen-Huene & H. Sankey (Eds.), Incommensurability and related matters (pp. 207–224). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Sillitoe, P. (1998). The development of indigenous knowledge. A new applied anthropology. Current Anthropology, 39(2), 223–235.

    Article  Google Scholar 

  • Sillitoe, P. (2000). Let them eat cake: Indigenous knowledge, science and the ‘poorest of the poor’. Anthropology Today, 16(6), 3–7.

    Article  Google Scholar 

  • Snively, G., & Corsiglia, J. (2001). Discovering indigenous science: Implications for science education. Science Education, 85(1), 6–34.

    Article  Google Scholar 

  • Somjee, S. H. (1996). Learning to be indigenous or being taught to be a Kenyan: The ethnography of teaching art and material culture in Kenya (Unpublished thesis). McGill University, Montreal.

    Google Scholar 

  • Sommers, P. S., Muller, J. S., Saba, G. W., Draisin, J. A., & Shore, W. B. (1994). Reflections-on-actions: Medical students’ accounts of their implicit beliefs and strategies in the context of one-to-one clinical teaching. Academic Medicine, 69(10), 584–586.

    Article  Google Scholar 

  • Stairs, A. (1995). Learning processes and teaching roles in native education: Cultural base and cultural brokerage. In M. Battiste & J. Barman (Eds.), First nation’s education in Canada: The circle unfolds (pp. 139–153). Vancouver: University of British Columbia Press.

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge Press.

    Google Scholar 

  • Toulmin, S., Rieke, R., & Janik, A. (1984). An introduction to reasoning. New York, NA: MacMillan.

    Google Scholar 

  • van Eemeren, F. H., Grootendorst, R. R., & Henkemans, S. F. (1996). Fundamentals of argumentation theory. Mahwa, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Vilakazi, H. W. (1999). The problem with African universities. In M. W. Makgoba (Ed.), African renaissance. Cape Town: Mafube-Tafelberg.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind and society: The development of higher mental processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Warren, D. M. (1991). Using indigenous knowledge in agricultural development (World Bank Discussion Paper No. 127). World Bank. The Hague.

    Google Scholar 

  • Wenger, E. (2004). Communities of practice: Learning, meaning, and identity. UK: Cambridge University Press.

    Google Scholar 

  • Wertsch, J. V. (1991). Voices of the mind. Cambridge: Harvard University Press.

    Google Scholar 

  • Yanow, D., & Tsoukas, H. (2009). What is reflection-in-action? A phenomenological account. Journal of Management Studies, 46(8), 1339–1364.

    Article  Google Scholar 

  • Yinger, J. (1986). Measuring racial discrimination with fair housing audits: Caught in the act. American Economic Review, 76(5), 881–892.

    Google Scholar 

  • Zeidler, D. L. (1997). The central role of fallacious thinking in science education. Science Education, 81, 483–496.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Sense Publishers

About this chapter

Cite this chapter

Mhakure, D., Otulaja, F.S. (2017). Culturally-Responsive Pedagogy in Science Education. In: Otulaja, F.S., Ogunniyi, M.B. (eds) The World of Science Education. Cultural and Historical Perpectives on Science Education: Handbooks. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6351-089-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-6351-089-9_6

  • Publisher Name: SensePublishers, Rotterdam

  • Online ISBN: 978-94-6351-089-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics