Skip to main content

Measuring Context-Based Learning Environments in Dutch Science Classrooms

  • Chapter
  • 934 Accesses

Part of the book series: Advances in Learning Environments Research ((ALER))

Abstract

A common trend in high school science education is to adopt a context-based pedagogical approach (Pilot & Bulte, 2006). This approach has been chosen since it is expected to assist in creating more interest among students to pursue a scientific higher educational career (Gilbert, 2006). In this chapter we address the characteristics of a context-based learning environment in science (CBLES) from both the student and the teacher’s perspective and how we can measure these characteristics in the classroom.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldridge, J. M., Fraser, B. J., Taylor, P. C., & Chen, C. C. (2000). Constructivist learning environments in a crossnational study in Taiwan and Australia. International Journal of Science Education, 22(1), 37–55.

    Article  Google Scholar 

  • Artiles, A. J. (1996). Teacher thinking in urban schools. Teacher Thinking in Cultural Contexts, 23–52.

    Google Scholar 

  • Bennett, J. (2003). Teaching and learning science. London: Continuum Press.

    Google Scholar 

  • Bennett, J., & Lubben, F. (2006). Context-based chemistry: The Salters’ approach. International Journal of Science Education, 28(9), 999–1015.

    Article  Google Scholar 

  • Bennett, J., Gräsel, C., Parchmann, I., & Waddington, D. (2005). Context-based and conventional approaches to teaching chemistry: Comparing teachers’ views. International Journal of Science Education, 27(13), 1521–1547.

    Article  Google Scholar 

  • Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347–370.

    Article  Google Scholar 

  • Boersma, K. (Ed.). (1987). 10 jaar leerplanontwikkeling 1975–1985 [10 years of learning pathway development 1975–1985]. Enschede: Instituut voor leerplanontwikkeling.

    Google Scholar 

  • Boersma, K., van Graft, M., Harteveld, A., de Hullu, E., de Knecht-van Eekelen, A., & Mazereeuw, M. (2007). Leerlijn biologie van 4 tot 18 jaar [A biology learning continuity pathway for K to 12]. Utrecht, the Netherlands: CVBO. Retrieved from www.nibi.nl

  • Brannick, M. T. (1995). Critical comments on applying covariance structure modeling. Journal of Organizational Behavior, 16(3), 201–213.

    Article  Google Scholar 

  • Commissie Vernieuwing Natuurkunde Onderwijs HAVO/VWO [Innovation committee high school physics education]. (2006). Natuurkunde leeft [Physics lives]. Retrieved from www.nieuwenatuurkunde.nl

  • De Putter-Smits, L. G. A., Taconis, R., Jochems, W. M. G., & Van Driel, J. (2011). De emphases van docenten biologie, natuurkunde en scheikunde en de gevolgen voor curriculum vernieuwingen [Science teachers’ emphases and consequences for curriculum innovations]. Tijdschrift voor Didactiek der bèta-wetenschappen, 28(1), 32–48.

    Google Scholar 

  • De Putter-Smits, L. G. A., Taconis, R., & Jochems, W. M. G. (2013). Mapping context-based learning environments: The construction of an instrument. Learning Environments Research, 16(3), 437–462.

    Article  Google Scholar 

  • den Brok, P., Bergen, T., & Brekelmans, M. (2006). Convergence and divergence between students’ and teachers’ perceptions of instructional behaviour in Dutch secondary education. In D. L. Fisher & M. S. Khine (Eds.), Contemporary approaches to reasearch on learning environments; worldviews (pp. 125–160). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Dorman, J. P. (2003). Cross-national validation of the What is Happening in this Class? (WIHIC) questionnaire using confirmatory factor analysis. Learning Environments Research, 6, 231–245.

    Article  Google Scholar 

  • Driessen, H., & Meinema, H. (2003). Chemie tussen context en concept: ontwerpen voor vernieuwing [Chemistry between context and concept: designing for innovation]. Enschede, The Netherlands: SLO Stichting Leerplanontwikkeling. Retrieved from www.nieuwescheikunde.nl

    Google Scholar 

  • Duranti, A., & Goodwin, C. (Eds.). (1992). Rethinking context: Language as an interactive phenomenon (No. 11). Cambridge: Cambridge University Press.

    Google Scholar 

  • Field, A. (2005). Discovering statistics using SPSS (2nd ed.). London: Sage publications.

    Google Scholar 

  • Fraser, B. J., Fisher, D. L., & McRobbie, C. J. (1996, April). Development, validation and use of personal and class forms of a new classroom environment instrument. Paper presented at the annual meeting of the American Educational Research Association, New York, NY.

    Google Scholar 

  • Fullan, M. (1994). The new meaning of educational change (3rd ed.). London, United Kingdom: Continuum Press.

    Google Scholar 

  • Gilbert, J. (2006). On the nature of context in chemical education. International Journal of Science Education, 28(9), 957–976.

    Article  Google Scholar 

  • Goh, S. C., & Khine, M. S. (2002). Studies in educational learning environments: An international perspective. Singapore: World Scientific.

    Book  Google Scholar 

  • Hondebrink, J. G. (1987). Vijftien jaar scheikunde (leer)plannen [15 years of chemistry (learning) pathways]. In K. Boersma (Ed.), 10 jaar leerplanontwikkeling 1975–1985 [10 years of learning pathway development 1975–1985] (pp. 47–56). Enschede: Instituut voor leerplanontwikkeling.

    Google Scholar 

  • Hooymayers, H. P. (1986). In H. M. C. Eijkelhof, E. Holl, B. Pulepessy, A. E. van der Valk, P. A. J. Verhagen, & R. F. A. Wierstra (Eds.), Op weg naar vernieuwing van het natuurkundeonderwijs. Een verzameling artikelen ter gelegenheid van de afronding van het Project Leerpakketontwikkeling Natuurkunde [Towards Innovation of Physics Education. A Collection of Articles on the Occasion of the Finishing of the Project Curriculum Development Physics (PLON)] (pp. 23–36). ’s Gravenhage: SVO.

    Google Scholar 

  • Johnson, B., & McClure, R. (2004). Validity and reliability of a shortened, revised version of the Constructivist Learning Environment Survey (CLES). Learning Environments Research, 7(1), 65–80.

    Article  Google Scholar 

  • Kirk, R. E. (1996). Practical significance: A concept whose time has come. Educational and Psychological Measurement, 56(5), 746–759.

    Article  Google Scholar 

  • Labudde, P. (2008). The role of constructivism in science education: Yesterday, today, and tomorrow. In S. Mikelskis-Seifert, U. Ringelband, & M. Bruckmann (Eds.), Four decades in research of science education—From curriculum development to quality improvement (pp. 139–156). Munster: Waxmann Verlag.

    Google Scholar 

  • Lamberigts, R., & Bergen, T. (2000, April). Teaching for active learning using a constructivist approach. Paper presented at the Annual meeting of the American Educational Research Association, New Orleans, LO.

    Google Scholar 

  • Lucas, K., & Roth, W. M. (1996). The nature of scientific knowledge and student learning: Two longitudinal case studies. Research in Science Education, 26, 103–127.

    Article  Google Scholar 

  • Lyons, T. (2006). Different countries, same science classes: Students’ experiences of school science in their own words. International Journal of Science Education, 28(6), 591–613.

    Article  Google Scholar 

  • Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., & Ralle, B. (2006). “Chemie im Kontext”: A symbiotic implementation of a context-based teaching and learning approach. International Journal of Science Education, 28(9), 1041–1062.

    Article  Google Scholar 

  • Pilot, A., & Bulte, A. (2006). The use of “contexts” as a challenge for chemistry curriculum: Its successes and the need for further development and understanding. International Journal of Science Education, 28(9), 1087–1112.

    Article  Google Scholar 

  • Roberts, D. A. (1982). Developing the concept of curriculum emphases in science education. Science Education, 66, 243–260.

    Article  Google Scholar 

  • Roth, W. M., & Bowen, G. (1995). Knowing and interacting: A study of culture, practices, and resources in a grade 8 open-ended science classroom guided by a cognitive apprenticeship model. Cognition and Instruction, 13, 73–128.

    Article  Google Scholar 

  • Steering Committee NLT [Advanced Science, Mathematics and Technology]. (2008). Outline of a new subject in the sciences: A vision of an interdisciplinary subject: Advanced science, mathematics and technology. Enschede: SLO. Retrieved from www.nieuwbetavak-nlt.nl

  • Tabachnick, B. G., & Fidell, L. S. (1997). Using multivariate statistics. New York, NY: HarperCollins.

    Google Scholar 

  • Taylor, P. C., Fraser, B. J., & Fisher, D. L. (1993, April). Monitoring the development of constructivist learning environments. Paper Presented at the Annual Meeting of the American Educational Research Association, New Orleans, LA.

    Google Scholar 

  • Taylor, P. C., Fraser, B. J., & Fisher, D. L. (1997). Monitoring constructivist classroom learning environments. International Journal of Educational Research, 27(4), 293–302.

    Article  Google Scholar 

  • Van Berkel, B. (2005). The structure of current school chemistry ( Doctoral dissertation). Utrecht University, The Netherlands.

    Google Scholar 

  • Van Driel, J. H., Bulte, A. M., & Verloop, N. (2008). Using the curriculum emphasis concept to investigate teachers’ curricular beliefs in the context of educational reform. Journal of Curriculum Studies, 40(1), 107–122.

    Article  Google Scholar 

  • Van Oers, B. (1998). From context to contextualizing. Learning and Instruction, 8(6), 473–488.

    Article  Google Scholar 

  • Vermunt, J. D., & Verloop, N. (1999). Congruence and friction between learning and teaching. Learning and Instruction, 9, 257–280.

    Article  Google Scholar 

  • Waddington, D. J. (2005). Context-based learning in science education: A review. In P. Nentwig & D. Waddington (Eds.), Making it relevant: Context-based learning of science (pp. 305–321). Münster: Waxmann Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Sense Publishers

About this chapter

Cite this chapter

Putter-Smits, L.G.A.D., Taconis, R., Jochems, W.M.G. (2016). Measuring Context-Based Learning Environments in Dutch Science Classrooms. In: Taconis, R., Brok, P.d., Pilot, A. (eds) Teachers Creating Context-Based Learning Environments in Science. Advances in Learning Environments Research. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6300-684-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-6300-684-2_7

  • Publisher Name: SensePublishers, Rotterdam

  • Online ISBN: 978-94-6300-684-2

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics