Skip to main content

Learning Chemistry to Enrich Students’ Views on the World they Live In

  • Chapter

Abstract

Chemistry presents a unique position among the sciences as an area of study in which students have opportunities to consider consequences of actions with personal and societal ramifications, both in the present and for the future. In particular, chemistry education can offer students opportunities to practice using chemical knowledge to evaluate benefits, costs and risks associated with products and processes, and to make informed decisions based on reasoned evaluation.

Keywords

  • Science Education
  • Progress Variable
  • Chemistry Education
  • Learning Progression
  • Wood Pellet

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-6300-175-5_4
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   49.99
Price excludes VAT (USA)
  • ISBN: 978-94-6300-175-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Chemical Society (ACS). (2011). Chemistry in context: Applying chemistry to society (7th ed.). Dubuque: McGraw Hill.

    Google Scholar 

  • American Chemical Society (ACS). (2012). Chemistry in the community (ChemCom) (6th ed.). New York: W. H. Freeman.

    Google Scholar 

  • Bennett, J.. & Lubben, F. (2006). Context-based chemistry: The Salters approach. International Journal of Science Education, 28, 999-1015.

    CrossRef  Google Scholar 

  • Bernholt, S., & Parchmann, I. (2011). Assessing the complexity of students’ knowledge in chemistry, Chemistry Education Research and Practice, 12, 167-173.

    CrossRef  Google Scholar 

  • Bulte, A. M. W., Westbroek, H. B., de Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28, 1063-1086.

    CrossRef  Google Scholar 

  • Chamizo J. A. (2013), Technochemistry: One of the chemists’ ways of knowing, Foundational Chemistry, 15, 157-170.

    CrossRef  Google Scholar 

  • Cullipher, S., Sevian, H., & Talanquer, V. (2012). A learning progression approach to studying benefits, costs and risks in chemical design. La Chimica Nella Scuola, 34, 344-351. www.didichim.org/cnsla-rivista/rivista-cns-speciale-3-2012.

  • Cullipher, S., Sevian, H., & Talanquer, V. (2015). Reasoning about benefits, costs, and risks of chemical substances: Mapping different levels of sophistication. Chemistry Education Research and Practice, 16, 377-392.

    CrossRef  Google Scholar 

  • Dobbie, M. E., & Brown, R. R. (2014). A framework for understanding risk perception explored from the perspective of the water practitioner. Risk Analysis. 34, 294-308.

    CrossRef  Google Scholar 

  • Duncan R. G., & Rivet A. E. (2013). Science learning progressions. Science, 339(6118), 396-397.

    CrossRef  Google Scholar 

  • European Commission on Public Health. (2013). Special Eurobarometer 361: Chemicals. European Commission. ec.europa.eu/public_opinion/flash/fl_361_en.pdf.

    Google Scholar 

  • Fechner, S. (2009). Effects of context-oriented learning on student achievement in chemistry education. Berlin: Logos.

    Google Scholar 

  • Gutwill-Wise, J. P. (2001). The impact of active and context-based learning in introductory chemistry courses: An early evaluation of the modular approach. Journal of Chemical Education, 78, 684-690.

    CrossRef  Google Scholar 

  • Kahan, D. M., Jenkins-Smith, H., & Braman, D. (2011). Cultural cognition of scientific consensus. Journal of Risk Research, 14, 147-174.

    CrossRef  Google Scholar 

  • Kolstø, S. D. (2001). Scientific literacy for citizenship: tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85, 291-310.

    CrossRef  Google Scholar 

  • Kraus, N., Malmfors, T., & Slovic, P. (1992). Intuitive toxicology: Expert and lay judgments of chemical risks. Risk Analysis, 12, 215-232.

    CrossRef  Google Scholar 

  • Levy Nahum, T., Mamlok-Naaman, R., Hofstein, A., & Kronik, L. (2008). A “bottom-up” framework for teaching chemical bonding. Journal of Chemical Education, 85, 1680-1685.

    CrossRef  Google Scholar 

  • Lijnse, P., & Klaassen, K. (2004). Didactical structures as an outcome of research on teaching–learning sequences? International Journal of Science Education, 26, 537-554.

    CrossRef  Google Scholar 

  • Meijer, M. R., Bulte, A. M. W., & Pilot, A. (2009). Structure–property relations between macro and micro representations: relevant mesolevels in authentic tasks. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 195- 213). Dordrecht: Springer.

    CrossRef  Google Scholar 

  • Meijer, M. R., Bulte, A. M. W., & Pilot, A. (2013). Macro-Micro thinking with structure-property relations; integrating ‘meso levels’ in secondary education. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 419-436). Dordrecht: Springer.

    CrossRef  Google Scholar 

  • Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46, 675-698.

    CrossRef  Google Scholar 

  • National Research Council ([NRC). (2003). Beyond the molecular frontier: challenges for chemistry and chemical engineering. Washington, D. C.: National Academy Press.

    Google Scholar 

  • National Research Council (NRC). (2011). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington, D. C.: The National Academies Press.

    Google Scholar 

  • Nentwig, P. M., Demuth, R., Parchmann, I., Gräsel, C., & Ralle, B. (2007). Chemie im Kontext: Situating learning in relevant contexts while systematically developing basic chemical concepts. Journal of Chemical Education, 84, 1439-1444.

    CrossRef  Google Scholar 

  • Prins, G. T., Bulte, A. M. W., Van Driel, J., & Pilot, A. (2008). Selection of authentic modelling practices as contexts for chemistry education. International Journal of Science Education, 30 1867-1890.

    CrossRef  Google Scholar 

  • Roberts, D. A. (1982). Developing the concept of ‘Curriculum Emphases’ in science education. Science Education, 66, 243-260.

    CrossRef  Google Scholar 

  • Roberts, D. A. (1988). What counts as science education? In P. J. Fensham (Ed.), Development and dilemma’s in science education (pp. 27-54). London: Palmer Press.

    Google Scholar 

  • Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28, 1463-1488.

    CrossRef  Google Scholar 

  • Sadler T. D., & Fowler, S. (2006). A threshold model of content knowledge transfer for socio-scientific argumentation. Science Education, 90, 986-1004.

    CrossRef  Google Scholar 

  • Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15, 10-23.

    CrossRef  Google Scholar 

  • Siegrist, M., & Cvetkovich, G. (2000). Perception of hazards: The role of social trust and knowledge. Risk Analysis, 20, 713-719.

    CrossRef  Google Scholar 

  • Slovic, P. (2010). The psychology of risk. Saúde E Sociedade, 19, 731-747.

    CrossRef  Google Scholar 

  • Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‘relevance’in science education and its implications for the science curriculum. Studies in Science Education, 49, 1-34.

    CrossRef  Google Scholar 

  • Taber, K. S. (2013). A common core to chemical conceptions: Learners; conceptions of chemical stability, change and bonding. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 391-418). Dordrecht: Springer.

    CrossRef  Google Scholar 

  • Talanquer, V. (2013). School chemistry: The need for transgression. Science & Education, 22, 1757-1773.

    CrossRef  Google Scholar 

  • Talanquer, V., & Pollard, J. (2010). Let’s teach how we think instead of what we know. Chemistry Education Research and Practice, 11, 74-83

    CrossRef  Google Scholar 

  • Van Aalsvoort, J. M. (2000). Chemistry in products. (PhD dissertation). Utrecht: Utrecht University.

    Google Scholar 

  • Van Driel, J. H., Bulte, A. M. W., & Verloop. N. (2005). The conceptions of chemistry teachers about teaching and learning in the context of curriculum innovation. International Journal of Science Education, 27, 303-322.

    CrossRef  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Westbroek, H. B. (2005). Characteristics of meaningful chemistry education (PhD dissertation). Utrecht: Utrecht University.

    Google Scholar 

  • Westbroek, H. B., Klaassen, K., Bulte, A. M. W., & Pilot, A. (2010). Providing students with a sense of purpose by adapting a professional practice. International Journal of Science Education, 32, 603-627.

    CrossRef  Google Scholar 

  • Wiser, M., Frazier, K. E., & Fox, V. (2013). At the beginning was amount of material: A learning progression for matter for early elementary grades. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 95-122). Dordrecht: Springer.

    CrossRef  Google Scholar 

  • World Health Organization. (1996). Guidelines for drinking-water quality (Vol. 2, 2nd ed.). Health criteria and other supporting information, World Health Organization: Geneva. www.who.int/water_sanitation_health/dwq/chloride.pdf.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Sense Publishers

About this chapter

Cite this chapter

Sevian, H., Bulte, A.M.W. (2015). Learning Chemistry to Enrich Students’ Views on the World they Live In. In: Eilks, I., Hofstein, A. (eds) Relevant Chemistry Education. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6300-175-5_4

Download citation