Logistic Regression

  • Brian F. French
  • Hason C. Immekus
  • Hsiao-Ju Yen

Abstract

Logistic regression (LR) is a statistical procedure used to investigate research questions that focus on the prediction of a discrete, categorical outcome variable from one or more explanatory variables. LR was developed within the field of epidemiology to examine the association between risk factors and dichotomous and continuous outcomes (Kleinbaum, Kupper, & Morgenstern, 1982; Tripepi, Jager, Stel, Dekker, Zoccali, 2011).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, P. D. (2003). Missing data techniques for structural equation modeling. Journal of Abnormal Psychology, 112, 545–557.CrossRefGoogle Scholar
  2. Allison, P. D.(2001). Missing data. Thousand Oaks, CA: Sage.Google Scholar
  3. Bennett, R. E., Rock, D. A., & Kaplan, B. A. (1987). SAT differential item performance for nine handicapped groups. Journal of Educational Measurement, 24, 41–55.CrossRefGoogle Scholar
  4. Cizek, G. J., & Fitzgerald, S. M. (1999). An introduction to logistic regression. Measurement and Evaluation in Counselling and Development, 31, 223–244.Google Scholar
  5. Cleary, P. D., & Angel, R. (1984). The analysis of relationships involving dichotomous dependent variables. Journal of Health and Social Behavior, 25, 334–348.CrossRefGoogle Scholar
  6. Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences, (2nd ed.), Hillsdale, N. J.: Lawrence Erlbaum Associates.Google Scholar
  7. Conijn, J. M., Emons, W. H. M., van Assen, Marcel A. L. M., & Sijtsma, K. (2011). On the usefulness of a multilevel logistic regression approach to person-fit analysis. Multivariate Behavioral Research, 46(2), 365–388. doi: 10.1080/00273171.2010.546733CrossRefGoogle Scholar
  8. Davis, L. J., & Offord, K. P. (1997). Logistic regression. Journal of Personality Assessment, 68(3), 497–507.CrossRefGoogle Scholar
  9. Enders, C. K. (2010). Applied missing data analysis. New York: Guilford Press.Google Scholar
  10. Fan, X., & Wang, L. (1999). Comparing linear discriminant function with logistic regression for the twogroup classification problem. Journal of Experimental Education, 67.Google Scholar
  11. French, B. F., & Finch, W. H. (2010). Hierarchical logistic regression: Accounting for multilevel data in DIF detection. Journal of Educational Measurement, 47, 299–317.CrossRefGoogle Scholar
  12. French, B. F., Immekus, J. C., & Oakes, W. C. (2005). An examination of indicators of Engineering students’ success and persistence. Journal of Engineering Education, 94, 419–425.CrossRefGoogle Scholar
  13. French, B. F., & Maller, S. J. (2007). Iterative purification and effect size use with logistic regression for DIF detection. Educational and Psychological Measurement, 67, 373–393.CrossRefGoogle Scholar
  14. Graham, J. W., Cumsille, P. E., & Elek-Fisk, E. (2003). Methods for handling missing data. In J. A. Schinka & W. F. Velicer (Eds.), Research methods in psychology (pp. 87–114). Volume 2 of the Handbook of Psychology (I. B. Weiner, Editor-in-Chief). New York: John Wiley & Sons.Google Scholar
  15. Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E. (2006). Planned missing data designs in psychological research. Psychological Methods, 11, 323–343.CrossRefGoogle Scholar
  16. Hassanuddin, N. A., Abdullah, Z., Mansor, N., & Hassan, N. H. (2012). Acceptance towards the use of internet banking services of cooperative bank. International Journal of Academic Research in Business and Social Sciences, 2, 135–148.Google Scholar
  17. Hosmer, D. W., & Lemeshow, S. (1989). Applied logistic regression. New York: Wiley.Google Scholar
  18. Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  19. Kleinbaum, D., Kupper, L., & Morgenstern, H. (1982). Epidemiologic research: Principles and quantitative methods, Chap 1–19. John Wiley and Sons Publishers, New York.Google Scholar
  20. Larsen, K., & Merlo, J. (2005). Appropriate assessment of neighborhood effects on individual health: Integrating random and fixed effects in multilevel logistic regression. American Journal of Epidemiology, 161, 81–88.CrossRefGoogle Scholar
  21. Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  22. Long. J. S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks, CA: Sage.Google Scholar
  23. Lottes, I. L., Adler, M. A., & DeMaris, A. (1996). Using and interpreting logistic regression: A guide for teachers and students. Teaching Sociology, 24, 284–298.CrossRefGoogle Scholar
  24. Menard, S. (2000). Coefficients of determination for multiple logistic regression analysis. The American Statistician, 54, 17–24.Google Scholar
  25. Menard, S. (1995). Applied logistic regression. Thousand Oakes, CA: Sage.Google Scholar
  26. Peng, C. J., So, T, H., Frances, F. K., & St. John, E. P. (2002). The use and interpretation of logistic regression in higher education journals: 1988–1999. Research in Higher Education, 43, 259–293.Google Scholar
  27. Peugh, J. L., & Enders, C. K. (2004). Missing data in education research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525–556.CrossRefGoogle Scholar
  28. Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. J. Wiley & Sons, New York.CrossRefGoogle Scholar
  29. Schafer, J. L., & Graham, J. W.(2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147–177.CrossRefGoogle Scholar
  30. Schmand, B., Eilelenboom, P., & vanGool, W. A. (2012). Value of diagnostic tests to predict conversion to Alzheimer’s disease in young and old patients with amnestic mild cognitive impairment. Journal of Alzheimer’s Disease, 29(3), 641–648.Google Scholar
  31. Swanson, d. B., Clauser, B. E., Case, S. M., Nungester, R. J., & Featherman, C. (2002). Analysis of differential item functioning (DIF) using hierarchical logistic regression models. Journal of Educational and Behavioral Statistics, 27, 53–75.Google Scholar
  32. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (4th ed.). Boston: Allyn and Bacon.Google Scholar
  33. Thompson, B. (1995). Stepwise regression and stepwise discriminant analysis need not apply here: A guidelines editorial. Educational and Psychological Measurement, 55, 525–534.CrossRefGoogle Scholar
  34. Tripepi, G., Jager, K. J., Stel, V. S., Dekker, F. W., & Zoccali, C. (2011). How to deal with continuous and dichotomous outcomes in epidemiologic research: Linear and logistic regression analyses. Nephron Clinical Practice, 118, 399–406.CrossRefGoogle Scholar

Copyright information

© Sense Publishers 2013

Authors and Affiliations

  • Brian F. French
  • Hason C. Immekus
  • Hsiao-Ju Yen

There are no affiliations available

Personalised recommendations