Cluster Analysis

  • Christine Distefano
  • Diana Mindrila

Abstract

Large multivariate datasets may provide a wealth of information, but often prove difficult to comprehend as a whole; therefore, methods to summarize and extract relevant information are essential. Such methods are the multivariate classification procedures, which use multiple variables to identify characteristics that groups of individuals have in common.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refernences

  1. Aldenderfer, M. S., & Blashfield, R. K. (1984). Cluster analysis. Beverly Hills, CA: Sage Publications.CrossRefGoogle Scholar
  2. Anderberg, M. R. (1973). Cluster analysis for applications. New York: Academic Press, Inc.Google Scholar
  3. Bergman, L. R., & Magnusson, D. (1997). A person-oriented approach in research on developmental psychopathology. Development & Psychopathology, 9, 291–319.CrossRefGoogle Scholar
  4. Bergman, L. R., & Trost, K. (2006). The person oriented versus the variable-oriented approach: Are they complementary, opposites, or exploring different worlds?, Merrill-Palmer Quarterly, 3, 601–632.CrossRefGoogle Scholar
  5. Blashfield, R. K., & Aldenderfer, M. S. (1988). The methods and problems of cluster analysis. In J. R Nesselroade, R. B Cattell (Eds.). International handbook of multivariate experimental psychology (pp. 311–359). New York: Plenum Press.Google Scholar
  6. Calinski, R. B., & Harabasz, J. (1974). A denrite method for cluster analysis. Communications in Statistics, 3, 1–27.Google Scholar
  7. Clogg, C. C. (1995). Latent class models. In G. Arminger, C. C. Clogg, & M. E. Sobel (Eds.), Handbook of statistical modeling for the social and behavioral sciences.Google Scholar
  8. Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: John Wiley & Sons, Inc.Google Scholar
  9. Enders, C. K. (2010). Applied missing data analysis. New York: The Guilford Press.Google Scholar
  10. Everitt, B. S. (1993). Cluster analysis (3rd ed.). New York: John Wiley & Sons, Inc.Google Scholar
  11. Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.), Chichester, UK: John Wiley & Sons, Ltd.Google Scholar
  12. Everitt, B. S. (1980). Cluster analysis (2nd ed.). London: Heineman Educational Books Ltd.Google Scholar
  13. Fang, Y., & Wang, J. (2012). Selection of the number of clusters via the bootstrap method, Computational Statistics and Data Analysis, 56, 468–477.CrossRefGoogle Scholar
  14. Frayley, C., & Raftery, A. (1998). How many clusters? Which clustering method? Answers via modelbased cluster analysis, Technical report 329, University of Washington, Department of statistics.Google Scholar
  15. Gordon, A. D. (1981). Classification. New York: Chapman and Hall.Google Scholar
  16. Hartigan, J. A. (1975). Clustering algorithms. New York: John Wiley & Sons, Inc.Google Scholar
  17. Heinen, T. (1993). Discrete latent variable models. Tilburg University Press, Tilburg.Google Scholar
  18. Heinen, T. (1996). Latent class and discrete latent trait models. Thousand Oaks, CA: Sage Publications.Google Scholar
  19. Huberty, C. J. (1994). Applied discriminant analysis. New York: John Wiley & Sons, Inc.Google Scholar
  20. Huberty, C. J., DiStefano, C., & Kamphaus, R. W. (1997). Behavioral clustering of school children. Multivariate Behavioral Research, 32, 105–134.CrossRefGoogle Scholar
  21. Kamphaus, R. W., Huberty, C. J., DiStefano, C., & Petoskey, M. D. (1997). A typology of teacher rated child behavior for a national U. S. sample. Journal of Abnormal Child Psychology, 25, 453–463.CrossRefGoogle Scholar
  22. Kass, R. E., & Raftery, A. E. (1995). Bayes factors, Journal of the American Statistical Association, 90, 773–795.CrossRefGoogle Scholar
  23. Kaufman, L., & Rousseeuw, P. (1990). Finding groups in data: An introduction to cluster analysis, New York: Wiley.CrossRefGoogle Scholar
  24. Krzanowski, W. J., & Lai, Y. T. (1985). A criterion for determining he number of clusters in a data set, Biometrics, 44, 23–34.CrossRefGoogle Scholar
  25. Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data, (2nd ed.). New York: John Wiley & Sons.CrossRefGoogle Scholar
  26. Lorr, M. (1983). Cluster analysis for social scientists: Techniques for analyzing and simplifying complex blocks of data. San Francisco: Jossey-Bass.Google Scholar
  27. Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325–342.CrossRefGoogle Scholar
  28. Milligan, G. W. (1996). Clustering validation: Results and implications for applied analyses. In P. Arabie, L. J. Hubert, & G. De Soete (eds.) Clustering and classification , River Edge, NJ: World Scientific.Google Scholar
  29. Milligan, G. W., & Cooper, M. C. (1987). Methodology review: Clustering methods. Applied Psychological Measurement, 11, 329–354.CrossRefGoogle Scholar
  30. Muthén, B., & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24, 882–891.CrossRefGoogle Scholar
  31. Pedhauzer, E. J. (1997). Multiple regression in behavioral rsearch: Explanation and prediction (3rd Ed). New York: Wadsworth Publishers.Google Scholar
  32. Reynolds, C. R., & Kamphaus, R. W. (1992). Behavior assessment system for children. Circle Pines, MN: American Guidance Service, Inc.Google Scholar
  33. Romesburg, H. C. (1984). Cluster analysis for researchers. Belmont, CA: Lifetime Learning Publications.Google Scholar
  34. Sarle, W. S. (1983). Cubic clustering criterion, SAS Technical Report A-108. Cary, NC: SAS Institute.Google Scholar
  35. Steinley, D. (2003). Local optima in K-means clustering: What you don’t know may hurt you. Psychological Methods, 8, 294–304.CrossRefGoogle Scholar
  36. Steinley, D. (2006). K-means clustering: A half-century synthesis. British Journal of Mathematical and Statistical Psychology, 59, 1–34.CrossRefGoogle Scholar
  37. Steinely, D. (2008). Stability analysis in K-means clustering. British Journal of Mathematical and Statistical Psychology, 61, 255–273.CrossRefGoogle Scholar
  38. Stoddard, A. M. (1979). Standardization of measures prior to cluster analysis. Biometrics, 35(4), 765–773.CrossRefGoogle Scholar
  39. Sugar, C. A., & James, G. M. (2003). Finding the number of clusters in a data set: An informationtheoretic approach. Journal of the American Statistical Association, 98, 750–763.CrossRefGoogle Scholar
  40. Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set using the gap statistic, Journal of the Royal Statistical Society, 63, 411–423.CrossRefGoogle Scholar
  41. Ward, J. H. (1963). Hierarchial grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.CrossRefGoogle Scholar

Copyright information

© Sense Publishers 2013

Authors and Affiliations

  • Christine Distefano
  • Diana Mindrila

There are no affiliations available

Personalised recommendations