The past few decades have witnessed an exponential growth of applications of Item Response Theory (IRT), also known as “latent trait theory” or “item characteristic curve theory,” in educational research and measurement. Simply speaking, IRT refers to a system that describes the relationship between an individual’s response to an item and the underlying trait being measured (Embretson & Reise, 2000).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayala, R. J. (2009). The theory and practice of item response theory. New York: Guilford Press.Google Scholar
  2. Boeck, P., & Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York: Springer.CrossRefGoogle Scholar
  3. Cai, L., Thissen, D., & du Toit, S. H. (2011). IRTPRO: Flexible, multidimensional, multiple categorical IRT modeling [Computer software]. Chicago, IL: Scientific Software International.Google Scholar
  4. Cole, D. A., Cai, L., Martin, N., Findling, R. L., Youngstrom, E. A., Garber, J., & Forehand, R. (2011). Structure and measure of depression in youths: Applying item response theory to clinical data. Psychological Assessment, 23, 819–833.CrossRefGoogle Scholar
  5. DeMars, C. (2010). Item response theory. New York: Oxford University Press.CrossRefGoogle Scholar
  6. Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  7. Fan, X. (1998). Item response theory and classical test theory: An empirical comparison of their item/person statistics. Educational & Psychological Measurement, 58, 357–381.CrossRefGoogle Scholar
  8. Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications. Norwwell, MA: Kluwer.CrossRefGoogle Scholar
  9. Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. Newbury Park, CA: Sage.Google Scholar
  10. Huang, C., & Mislevy, R. J. (2010). An application of the polytomous Rasch model to mixed strategies. In M. L. Nering & R. Ostini (Eds.), Handbook of polytomous item response theory models (pp. 211–228). New York: Routledge.Google Scholar
  11. Kim, S., Harris, D. J., & Kolen, M. J. (2010). Equating with polytomous item response models. In M. L. Nering & R. Ostini (Eds.), Handbook of polytomous item response theory models (pp. 257–291). New York: Routledge.Google Scholar
  12. Kolen, M. J., & Brennan, R. L. (2010). Test equating, scaling, and linking: Methods and practices (2nd ed.). New York: Springer.Google Scholar
  13. Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Boca Raton, FL: Chapman & Hall.CrossRefGoogle Scholar
  14. Thissen, D., & Wainer, H. (2001). Test scoring. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  15. Wainer, H., & Braun, H. I. (1988). Test validity. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  16. Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  17. Yen, W. M., & Fitzpatrick, A. R. (2006). Item response theory. In R. L. Brennan (Ed.), Educational measurement (4th ed.). Westport, CT: Praeger.Google Scholar

Copyright information

© Sense Publishers 2013

Authors and Affiliations

  • Xitao Fan
  • Shaojing Sun

There are no affiliations available

Personalised recommendations