Selecting Sem Computer Programs

  • Barbara M. Byrne

Abstract

The rate at which structural equation modeling (SEM) has grown over the past 30 years or so has been truly quite remarkable! At least one interesting offshoot of this escalation, however, has been the somewhat parallel growth of computer software capable of handling the statistical rigors demanded by the SEM methodology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbuckle, J. L. (2009). AMOS18 User’s Guide. Chicago, IL: SPSS.Google Scholar
  2. Bentler, P. M. (2005). EQS 6 structural equations program manual. Encino, CA: Multivariate Software.Google Scholar
  3. Bentler, P. M., & Weeks, D. G. (1980). Linear structural equations with latent variables. Psychometrika, 45, 289–308.CrossRefGoogle Scholar
  4. Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods and Research, 21, 205–229.CrossRefGoogle Scholar
  5. Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Press.Google Scholar
  6. Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62–83.CrossRefGoogle Scholar
  7. Byrne, B. M. (1994). Testing for the factorial validity, replication, and invariance of a measuring instrument: A paradigmatic application based on the Maslach Burnout Inventory. Multivariate Behavioral Research, 29, 289–311.CrossRefGoogle Scholar
  8. Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Mahwah, NJ: Erlbaum.Google Scholar
  9. Byrne, B. M. (2001). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Mahwah, NJ: Erlbaum.Google Scholar
  10. Byrne, B. M. (2006). Structural equation modeling with EQS: Basic concepts, applications, and programming (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  11. Byrne, B. M. (2010). Structural equation modeling with AMOS: Basic concepts, applications, and programming (2nd ed.). New York, NY: Taylor & Francis/Routledge.Google Scholar
  12. Byrne, B. M. (2011). Structural equation modeling with Mplus: Basic concepts, applications and programming. New York, NY: Taylor & Francis/Routledge.Google Scholar
  13. Chou, C.-P, Bentler, P. M., & Satorra, A. (1991). Scaled test statistics and robust standard errors for nonnormal data in covariance structure analysis. British Journal of Mathematical and Statistical Psychology, 44, 347–357.CrossRefGoogle Scholar
  14. Curran, P. J., West. S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16–29.CrossRefGoogle Scholar
  15. DiStefano, C. (2002). The impact of categorization with confirmatory factor analysis. Structural Equation Modeling, 9, 327–346.CrossRefGoogle Scholar
  16. Dolan, C. V. (1994). Factor analysis of variables with 2, 3, 5, and 7 response categories: A comparison of categorical variable estimators using simulated data. British Journal of Mathematical and Statistical Psychology, 47, 309–326.CrossRefGoogle Scholar
  17. Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 1–26.CrossRefGoogle Scholar
  18. Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491.CrossRefGoogle Scholar
  19. Hu, L-T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351–362.CrossRefGoogle Scholar
  20. Jöreskog, K. G. (1990). New developments in LISREL: Analysis of ordinal variables using polychoric correlations and weighted least squares. Quality and Quantity, 24, 387–404.CrossRefGoogle Scholar
  21. Jöreskog, K. G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59, 381–389.CrossRefGoogle Scholar
  22. Jöreskog, K. G., & Sörbom, D. (1993a). New features in LISREL 8. Chicago, IL: Scientific Software International.Google Scholar
  23. Jöreskog, K. G., & Sörbom, D. (1993b). LISREL 8. Structural equation modeling with the SIMPLIS command language. Chicago, IL: Scientific Software International.Google Scholar
  24. Jöreskog, K. G., & Sörbom, D. (1996). PRELIS 2. Chicago, IL: Scientific Software International.Google Scholar
  25. Jöreskog, K. G., & Sörbom, D. (2006). LISREL 8.8. for Windows. Lincolnwood, IL: Scientific Software International.Google Scholar
  26. Lee, S. -Y., Poon, W. -Y., & Bentler, P. M. (1995). A two-stage estimation of structural equationGoogle Scholar
  27. models with continuous and polytomous variables. British Journal of Mathematical and Statistical Psychology, 48, 339–358.Google Scholar
  28. Maslach, C., & Jackson, S. E. (1986). Maslach burnout inventory manual (2nd ed.). Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  29. Muthén, B. O. (1994). Multilevel covariance structure analysis. Sociological Methods & Research, 22, 376–398.CrossRefGoogle Scholar
  30. Muthén, B., & Kaplan, D. (1992). A comparison of some methodologies for the factor analysis of nonnonnormal Likert variables: A note on the size of the model. British Journal of Mathematical and Statistical Psychology, 45, 19–30.CrossRefGoogle Scholar
  31. Muthén, B., du Toit, S. H. C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Technical report. UCLA.Google Scholar
  32. Muthén, L. K., & Muthén, B. O. (2007–2010). Mplus user’s guide (6th ed.). Los Angeles, CA: Authors.Google Scholar
  33. Raykov, T., & Marcoulides, G. A. (2000). A first course in structural equation modeling. Mahwah, NJ: Erlbaum.Google Scholar
  34. Satorra, A., & Bentler, P. M. (1988). Scaling corrections for chi square statistics in covariance structure analysis. American statistical association 1988 Proceedings of the business and economic sections (pp. 308–313). Alexandria, VA: American Statistical Association.Google Scholar
  35. Sörbom, D. (1989). Model modification. Psychometrika, 54, 371–384.CrossRefGoogle Scholar
  36. Stine, R. A. (1989). An introduction to bootstrap methods: Examples and ideas. Sociological Methods and Research, 18, 243–291.CrossRefGoogle Scholar
  37. West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 56–75). Thousand Oaks, CA: Sage.Google Scholar
  38. Yuan, K.-H., & Bentler, P. M. (1998). Normal theory based test statistics in structural equation modeling. British Journal of Mathematical and Statistical Psychology, 51, 289–309.CrossRefGoogle Scholar
  39. Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. In M. P. Becker (Ed.), Sociological methodology 2000 (pp. 165–200). New York: Wiley-Blackwell.Google Scholar
  40. Yung, Y-F., & Bentler, P. M. (1996). Bootstrapping techniques in analysis of mean and covariance structures. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 195–226). Mahwah NJ: Erlbaum.Google Scholar
  41. Zhu, W. (1997). Making bootstrap statistical inferences: A tutorial. Research Quarterly for Exercise and Sport, 68, 44–55.CrossRefGoogle Scholar

Copyright information

© Sense Publishers 2013

Authors and Affiliations

  • Barbara M. Byrne

There are no affiliations available

Personalised recommendations