Introduction to Confirmatory Factor Analysis and Structural Equation Modeling

  • Matthew W. Gallagher
  • Timothy A. Brown

Abstract

Confirmatory factor analysis (CFA) is a powerful and flexible statistical technique that has become an increasingly popular tool in all areas of psychology including educational research. CFA focuses on modeling the relationship between manifest (i.e., observed) indicators and underlying latent variables (factors).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, P. D. (2003). Missing data techniques for structural equation models. Journal of Abnormal Psychology, 112, 545–557.CrossRefGoogle Scholar
  2. Arbuckle, J. L. (2010). IBM SPSS Amos 19 User’s Guide. Crawfordville, FL: Amos Development Corporation.Google Scholar
  3. Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397–438.CrossRefGoogle Scholar
  4. Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality & Social Psychology, 51, 1173–1182.CrossRefGoogle Scholar
  5. Bentler, P. M. (1990). Comparative fit indices in structural equation models. Psychological Bulletin, 28, 97–104.Google Scholar
  6. Bentler, P. M. (2006). EQS for Windows (Version 6.0) [Computer software]. Encino, CA: Multivariate Software.Google Scholar
  7. Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606.CrossRefGoogle Scholar
  8. Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley-Interscience.Google Scholar
  9. Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Press.Google Scholar
  10. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21, 230–258.CrossRefGoogle Scholar
  11. Burkholder, G. J., & Harlow, L. L. (2003). An illustration of a longitudinal cross-lagged design for larger structural equation models. Structural Equation Modeling, 10, 465–486.CrossRefGoogle Scholar
  12. Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitraitmultimethod matrix. Psychological Bulletin, 56, 81–105.CrossRefGoogle Scholar
  13. Chemers, M. M., Hu, L., & Garcia, B. (2001). Academic self-efficacy and first-year college student performance and adjustment. Journal of Educational Psychology, 93, 55–65.CrossRefGoogle Scholar
  14. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255.CrossRefGoogle Scholar
  15. Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Myths and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112, 558–577.CrossRefGoogle Scholar
  16. Collins, L. M. (2006): Analysis of longitudinal data; The integration of theoretical model, temporal design, and statistical model, Annual Review of Psychology 57, 505–528.Google Scholar
  17. Eliason, S. R. (1993), Maximum likelihood estimation. Newbury Park, CA: Sage.CrossRefGoogle Scholar
  18. Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford Press.Google Scholar
  19. Fox, J. (2006). Structural equation modeling with the sem package In R. Structural Equation Modeling, 13, 465–486.CrossRefGoogle Scholar
  20. Gallagher, M. W., & Lopez, S. J. (2008, August). The unique effects of hope and self-efficacy on academic performance. Poster presented at the American Psychological Association 116th Annual Convention, Boston, MA.Google Scholar
  21. Hu, L., & Benter, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.CrossRefGoogle Scholar
  22. Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s reference guide. Chicago: Scientific Software International.Google Scholar
  23. Kenny, D. A., & Kashy, D. A. (1992). The analysis of the multitrait-multimethod matrix using confirmatory factor analysis. Psychological Bulletin, 112, 165–172.CrossRefGoogle Scholar
  24. Kline, R. B. (2010). Principles and practice of structural equation modeling (3rd ed.). New York: Guilford Press.Google Scholar
  25. Little, T. D., Bovaird, J. A., & Card, N. A. (Eds.). (2007). Modeling contextual effects in longitudinal studies. Mahwah, NJ: Erlbaum.Google Scholar
  26. Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and interaction terms: Implications for modeling interactions among latent variables. Structural Equation Modeling, 13, 497–519.CrossRefGoogle Scholar
  27. Little, T. D., Slegers, D. W., & Card, N. A. (2006). A non-arbitrary method of identifying and scaling latent variables in SEM and MACS models. Structural Equation Modeling, 13, 59–72.CrossRefGoogle Scholar
  28. MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51, 201–226.CrossRefGoogle Scholar
  29. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130–149CrossRefGoogle Scholar
  30. MacCallum, R. C., Roznowski, M., & Necowitz, L. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111, 490–504.CrossRefGoogle Scholar
  31. MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Mahwah, NJ: Erlbaum.Google Scholar
  32. McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577–605.CrossRefGoogle Scholar
  33. McDonald, R. P., & Ho, M. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7, 64–82.CrossRefGoogle Scholar
  34. Muthén, B. O., & Asparouhov, T. (2008). Growth mixture modeling: Analysis with non-Gaussian random effects. In G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs (Eds.), Longitudinal data analysis (pp. 143–165). Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  35. Muthén, B. O., & Muthén, L. K. (2008–2012). Mplus user’s guide. Muthén & Muthén: Los Angeles, CA.Google Scholar
  36. Muthén, L. K. and Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 4, 599–620.CrossRefGoogle Scholar
  37. Neale, M. C., Boker, S. M., Xie, G., Maes, H. H. (2003). Mx: Statistical modeling. 6. Department of Psychiatry, Virginia Commonwealth University/.Google Scholar
  38. Preacher, K. J., & Coffman, D. L. (2006, May). Computing power and minimum sample size for RMSEA [Computer software]. Available from http://www.quantpsy.org/.Google Scholar
  39. Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879–891.CrossRefGoogle Scholar
  40. Preacher, K. J., Wichman, A. L., MacCallum, R. C., & Briggs, N. E. (2008). Latent growth curve modeling. Thousand Oaks, CA: Sage Publications.CrossRefGoogle Scholar
  41. Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15, 209–233.CrossRefGoogle Scholar
  42. SAS Institute (2005). SAS/STAT User’s Guide, Version 9. Cary, NC: SAS Institute Inc.Google Scholar
  43. Schafer. J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147–177.CrossRefGoogle Scholar
  44. Schoemann, A. D. (2010). Latent variable moderation. Retrieved January 22nd, 2012, from http://www.quant.ku.edu/pdf/16.1%20latent%20variable%20moderation.pdf.
  45. Selig, J. P., & Preacher, K. J. (2009). Mediation models for longitudinal data in developmental research. Research in Human Development, 6, 144–164CrossRefGoogle Scholar
  46. Steiger, J. H., & Lind, J. C. (1980). Statistically-based tests for the number of common factors. Paper presented at the annual Spring Meeting of the Psychometric Society in Iowa City. May 30, 1980.Google Scholar
  47. Teo, T., & Khine, M. S. (Eds.) (2009). Structural equation modeling in educational research: Concepts and applications. Rotterdam: Sense Publishers.Google Scholar
  48. Thurstone, L. L. (1947). Multiple-Factor Analysis. Chicago: University of Chicago Press.Google Scholar

Copyright information

© Sense Publishers 2013

Authors and Affiliations

  • Matthew W. Gallagher
  • Timothy A. Brown

There are no affiliations available

Personalised recommendations