Advertisement

Abstract

The objective of scientific investigations is to gain knowledge and understanding about phenomena through careful and systematic observations and analyses. Arguably, scientific research has an inherent cumulative nature since dependable information of prior scientific inquiries guides future studies as well as facilitates knowledge building.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester West Sussex, U.K.: Wiley.CrossRefGoogle Scholar
  2. Cohn, L. D., & Becker, B. J. (2003). How meta-analysis increases statistical power. Psychological Methods, 8, 243–253.CrossRefGoogle Scholar
  3. Cook, T. D., Cooper, H., Cordray, D., Hartmann, H., Hedges, L., Light, R., Louis, T., Mosteller, F. (Eds.). (1992). Meta-Analysis for explanation: A casebook. New York: Russell Sage Foundation.Google Scholar
  4. Cooper, H. (1989). Integrating research (2nd Ed.). Newbury Park, CA: Sage Publications.Google Scholar
  5. Cooper, H., Hedges, L. V., & Valentine, J. C. (2009). The handbook of research synthesis and metaanalysis (2nd Ed.). New York: Russell Sage.Google Scholar
  6. Cooper, H., Valentine, J. C., Charlton, K., & Melson, A. (2003). The effects of modified school calendars on student achievement and on school and community attitudes: A research synthesis. Review of Educational Research, 73, 1–52.CrossRefGoogle Scholar
  7. DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7, 177–188.CrossRefGoogle Scholar
  8. Garvey, W., & Griffith, B. (1971). Scientific communication: Its role in the conduct of research and creation of knowledge. American Psychologist, 26, 349–361.CrossRefGoogle Scholar
  9. Fleiss, J. L. (1994). Measures of effect size for categorical data. Pages 245–260 in H. Cooper and L. V. Hedges, The handbook of research synthesis. New York: The Russell Sage Foundation.Google Scholar
  10. Glass, G. V. (1976). Primary, secondary, and meta-analysis. Educational Researcher, 5, 3–8.CrossRefGoogle Scholar
  11. Hedges, L. V. (1983). A random effects model for effect sizes. Psychological Bulletin, 93, 388–395.CrossRefGoogle Scholar
  12. Hedges, L. V. (2009). Statistical considerations. In H. Cooper, L. V. Hedges, & J. C. Valentine, The handbook of research synthesis and meta-analysis (pp. 357–376). New York: Russell Sage.Google Scholar
  13. Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.Google Scholar
  14. Hedges, L. V., & Vevea, J. L. (1998). Fixed and random effects models in meta analysis. Psychological Methods, 3, 486–504.CrossRefGoogle Scholar
  15. Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level metaanalysis? Research Synthesis Methods, 2, 61–76.CrossRefGoogle Scholar
  16. Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage.Google Scholar
  17. Littell, R. C., Milliken, G. A., Stroup, W. W., & Wolfinger, R. D. (1996). SAS system for mixed models. Cary, NC: SAS Institute INC.Google Scholar
  18. Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models. Newbury Park, CA: Sage.Google Scholar
  19. Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimentaldesigns for generalized causal inference. Boston, MA: HoughtonMifflin.Google Scholar
  20. Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel growth models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 24, 323–355.CrossRefGoogle Scholar

Copyright information

© Sense Publishers 2013

Authors and Affiliations

  • Spyros Konstantopoulos

There are no affiliations available

Personalised recommendations