Skip to main content

Part of the book series: Advances in Creativity and Giftedness ((ACAG,volume 5))

  • 2057 Accesses

Abstract

Graham Wallas first introduced a model of creative process in his work Art of Thought (1926) where he began to elucidate the process by which an individual cultivates creative thought. In the following decades, psychologists attempted to develop psychometric measures that could tap an individual’s creative capacity via specific cognitive domains, such as divergent and convergent thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aboitiz, F. (1992). The origin of the mammalian brain as a case of evolutionary irreversibility. Med Hypotheses, 38(4), 301–304.

    Article  Google Scholar 

  • Amabile, T. M. (1982). Social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43(5), 997–1013.

    Article  Google Scholar 

  • Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214(2), 143–156.

    Article  Google Scholar 

  • Asari, T., Konishi, S., Jimura, K., Chikazoe, J., Nakamura, N., & Miyashita, Y. (2008). Right temporopolar activation associated with unique perception. Neuroimage, 41(1), 145–152.

    Article  Google Scholar 

  • Bennett, C. M., & Miller, M. B. (2010). How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci, 1191, 133–155.

    Article  Google Scholar 

  • Binet, A., Simon, T., & Kite, E. S. (1916). The development of intelligence in children (The Binet-Simon Scale). Baltimore, MD, US: Williams & Wilkins Co.

    Book  Google Scholar 

  • Bishop, G. H., & Smith, J. M. (1964). The Size of Nerve Fibers Supplying Cerebral Cortex. Exp Neurol, 9, 483–501.

    Article  Google Scholar 

  • Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems. Behav Res Methods Instrum Comput, 35(4), 634–639.

    Article  Google Scholar 

  • Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci, 12(1), 1–47.

    Article  Google Scholar 

  • Campbell, D. T. (1960). Blind variation and selective retentions in creative thought as in other knowledge processes. Psychological Review, 67(6), 380–400.

    Article  Google Scholar 

  • Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97(3), 404–431.

    Article  Google Scholar 

  • Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased Latent Inhibition Is Associated With Increased Creative Achievement in High-Functioning Individuals. Journal of Personality and Social Psychology, 85(3), 499–506.

    Article  Google Scholar 

  • Carson, S. H., Peterson, J. B., & Higgins, D. M. (2005). Reliability, Validity, and Factor Structure of the Creative Achievement Questionnaire. Creativity Research Journal, 17(1), 37–50.

    Article  Google Scholar 

  • Colombo, J. A., Reisin, H. D., Miguel-Hidalgo, J. J., & Rajkowska, G. (2006). Cerebral cortex astroglia and the brain of a genius: a propos of A. Einstein’s. Brain Res Rev, 52(2), 257–263.

    Article  Google Scholar 

  • Costa, P. T., & McCrae, R. R. (1992). NEO PI-R professional manual. Odessa, FL: Psychological Assessment Resources, Inc.

    Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194.

    Google Scholar 

  • Danielian, L. E., Iwata, N. K., Thomasson, D. M., & Floeter, M. K. Reliability of fiber tracking measurements in diffusion tensor imaging for longitudinal study. Neuroimage, 49(2), 1572–1580.

    Google Scholar 

  • Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980.

    Article  Google Scholar 

  • Diamond, M. C., Scheibel, A. B., Murphy, G. M., Jr., & Harvey, T. (1985). On the brain of a scientist: Albert Einstein. Exp Neurol, 88(1), 198–204.

    Article  Google Scholar 

  • Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychon Bull Rev, 11(6), 1011–1026.

    Article  Google Scholar 

  • Dietrich, A. (2007). Who’s afraid of a cognitive neuroscience of creativity? Methods, 42, 22–27.

    Article  Google Scholar 

  • Dietrich, A., & Audiffren, M. The reticular-activating hypofrontality (RAH) model of acute exercise. Neurosci Biobehav Rev, 35(6), 1305–1325.

    Google Scholar 

  • Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol Bull, 136(5), 822–848.

    Article  Google Scholar 

  • Digman, J. M. (1990). Personality structure: Emergence of the five-factor model. Annual Review of Psychology, 41, 417–440.

    Article  Google Scholar 

  • Dollinger, S. J., Urban, K. K., & James, T. A. (2004). Creativity and Openness: Further Validation of Two Creative Product Measures. Creativity Research Journal, 16(1), 35–47.

    Article  Google Scholar 

  • Domino, G., & Domino, M. L. (2006). Psychological Testing (Vol. 2nd Edition). New York: Cambridge University Press.

    Google Scholar 

  • Drago, V., Foster, P. S., Trifiletti, D., FitzGerald, D. B., Kluger, B. M., Crucian, G. P., et al. (2006). What’s inside the art? The influence of frontotemporal dementia in art production. Neurology, 67(7), 1285–1287.

    Article  Google Scholar 

  • Eysenck, H. (1995). Genius: The natural history of creativity. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Filley, C. M. (2001). The behavioral neurology of white matter. New York: Oxford University Press.

    Google Scholar 

  • Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42(1), 68–76.

    Article  Google Scholar 

  • Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A, C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23(8), 2241.

    Google Scholar 

  • Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V, Fally, M., et al. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734–748.

    Article  Google Scholar 

  • Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62(1), 46–53.

    Article  Google Scholar 

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A, 97(20), 11050–11055.

    Article  Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.

    Article  Google Scholar 

  • Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., et al. (2004). Sequence-independent segmentation of magnetic resonance images. Neuroimage, 23 Suppl 1, S69–84.

    Article  Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195–207.

    Article  Google Scholar 

  • Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cereb Cortex, 14(1), 11–22.

    Article  Google Scholar 

  • Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. J Comp Neurol, 493(1), 147–153.

    Article  Google Scholar 

  • Friede, R. L., & Samorajski, T. (1967). Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves of mice. J Comp Neurol, 130(3), 223–231.

    Article  Google Scholar 

  • Gasparovic, C., Bedrick, E., Mayer, A. R., Yeo, R. A., Calhoun, V. C., & Jung, R. E. (In Press). Test-retest reliability of short-echo-time spectroscopic imaging data from human brain at 3T. Magn Reson Med.

    Google Scholar 

  • Goel, V., & Vartanian, O. (2005). Dissociating the R oles of Right Ventral Lateral and Dorsal Lateral Prefrontal Cortex in Generation and Maintenance of Hypotheses in Set-shift Problems. Cerebral Cortex, 15(8), 1170–1177.

    Article  Google Scholar 

  • Good, C. D., Scahill, R. I., Fox, N. C., Ashburner, J., Friston, K. J., Chan, D., et al. (2002). Automatic Differentiation of Anatomical Patterns in the Human Brain: Validation with Studies of Degenerative Dementias. Neuroimage, 17(1), 29–46.

    Article  Google Scholar 

  • Gossuin, Y., Hocq, A., Gillis, P., & Vuong, Q. L. Physics of magnetic resonance imaging: from spin to pixel. [Review]. Journal of Physics D-Applied Physics, 43(21), 15.

    Google Scholar 

  • Grabner, R. H., Fink, A., & Neubauer, A. C. (2007). Brain correlates of self-rated originality of ideas: Evidence from event-related power and phase-locking changes in the EEG. Behavioral neuroscience, 121(1), 224.

    Article  Google Scholar 

  • Graham, S., Jiang, J. Y., Manning, V., Nejad, A. B., Zhisheng, K., Salleh, S. R., et al. (2010). IQ-Related fMRI Differences during Cognitive Set Shifting. [Article]. Cerebral Cortex, 20(3), 641–649.

    Article  Google Scholar 

  • Guilford, J. P. (1967). The Nature of Human Intelligence. New York: McGraw-Hill.

    Google Scholar 

  • Guilford, J. P. (1984). Varieties of divergent production. The Journal of Creative Behavior, 18(1), 1–10.

    Article  Google Scholar 

  • Haider, H., & Rose, M. (2007). How to investigate in sight: a proposal. Methods, 42(1), 49–57.

    Article  Google Scholar 

  • Haier, R. J., White, N. S., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31(5), 429–441.

    Article  Google Scholar 

  • Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., et al. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage, 32(1), 180–194.

    Article  Google Scholar 

  • Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. ( 2003). Creative innovation: possible brain mechanisms. Neurocase, 9(5), 369–379.

    Article  Google Scholar 

  • Howard-Jones, P. A., Blakemore, S. J., Samuel, E. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Cognitive Brain Research, 25(1), 240–250.

    Article  Google Scholar 

  • JauÅ¡ovec, N., & JauÅ¡ovec, K. (2000). EEG activity du ring the performance of complex mental problems. International Journal of Psychophysiology, 36(1), 73–88.

    Article  Google Scholar 

  • Jin, S. H., Kwon, Y. J., Jeong, J. S., Kwon, S. W., & Shin, D. H. (2006). Differences in brain information transmission between gifted and normal children during scientific hypothesis generation. Brain Cogn, 62(3), 191–197.

    Article  Google Scholar 

  • Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: disentangling constructs with diffusion tensor imaging. PloS One, 5(3), e9818–e9818.

    Article  Google Scholar 

  • Jung, R. E., & Haier, R. J. (2007). The Parieto-Fron tal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(02), 135–154.

    Article  Google Scholar 

  • Jung, R. E., Segall, J. M., Grazioplene, R. G., Qual ls, C., Sibbitt, W. L., & Roldan, C. A. (2010). Cortical thickness and subcortical gray matter reductions in neuropsychiatric systemic lupus erythematosus. [Research Support, N.I.H., Extramural]. PLoS ONE, 5(3), e9302.

    Google Scholar 

  • Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., et al. (2010). Neuroanatomy of creativity. Hum Brain Mapp, 31(3), 398–409.

    Google Scholar 

  • Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymia re, J. L., Arambel-Liu, S., Greenblatt, R., et al. (2004a). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), 500–510.

    Google Scholar 

  • Kim, K. H. (2005). Can only intelligent people be creative? The Journal of Secondary Gifted Education, 2/3(Winter/Spring), 57–66.

    Google Scholar 

  • King, L. A., McKee Walker, L., & Broyles, S. J. (199 6). Creativity and the five-factor model. Journal of Research in Personality, 30(2), 189–203.

    Google Scholar 

  • Kounios, J., & Beeman, M. (2009). The Aha! Moment: T he Cognitive Neuroscience of Insight. Current Directions in Psychological Science, 18(4), 210–216.

    Article  Google Scholar 

  • Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., et al. (2009a). Neural networks involved in artistic creativity. Hum Brain Mapp, 30(5), 1678–1690.

    Article  Google Scholar 

  • Lee, K. H., Cho, S. H., Nijenhuis, J. T., van Vianen, A. E. M., & Kim, H. B. (2010). The Relationship Between Diverse Components of Intelligence and Creativity. Journal of Creative Behavior, 44(2), 125–137.

    Article  Google Scholar 

  • Lubow, R. E. (2010). Latent Inhibition The Corsini Encyclopedia of Psychology: John Wiley & Sons, Inc.

    Google Scholar 

  • Mascalchi, M., Filippi, M., Floris, R., Fonda, C., Gasparotti, R., & Villari, N. (2005). Diffusion-weighted MR of the brain: methodology and clinical application. Radiol Med (Torino), 109(3), 155–197.

    Google Scholar 

  • Mashal, N., Faust, M., Hendler, T., & Jung-Beeman, M. (2007). An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain and Language, 100(2), 115–126.

    Article  Google Scholar 

  • McCrae, R. R. (1987). Creativity, divergent thinking, and openness to experience. Journal of Personality and Social Psychology, 52(6), 1258–1265.

    Article  Google Scholar 

  • Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69(3), 220–232.

    Article  Google Scholar 

  • Meyer, U., Schwendener, S., Feldon, J., & Yee, B. K. (2006). Prenatal and postnatal maternal contributions in the infection model of schizophrenia. Exp Brain Res, 173(2), 243–257.

    Article  Google Scholar 

  • Michael, A. M., Baum, S. A., White, T., Demirci, O., Andreasen, N. C., Segall, J. M., et al. Does function follow form?: Methods to fuse structural and functional brain images show decreased linkage in schizophrenia. [Article]. Neuroimage, 49(3), 2626–2637.

    Google Scholar 

  • Miller, B. L., Boone, K., Cummings, J. L., Read, S. L., & Mishkin, F. (2000). Functional correlates of musical and visual ability in frontotemporal dementia. Br J Psychiatry, 176, 458–463.

    Article  Google Scholar 

  • Miller, B. L., Cummings, J., Mishkin, F., Boone, K., Prince, F., Ponton, M., et al. (1998). Emergence of artistic talent in frontotemporal dementia. Neurology, 51(4), 978–982.

    Article  Google Scholar 

  • Miller, E. M. (1994). Intelligence and brain myelination – A hypothesis. Personality and Individual Differences, 17(6), 803–832.

    Article  Google Scholar 

  • Miller, G. F., & Tal, I. R. (2007). Schizotypy versus openness and intelligence as predictors of creativity. Schizophrenia Research, 93, 317–324.

    Article  Google Scholar 

  • Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci, S. J., et al. (1996). Intelligence: Knowns and unknowns. [Review]. American Psychologist, 51(2), 77–101.

    Article  Google Scholar 

  • Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., et al. (1999). Structural maturation of neural pathways in children and adolescents: in vivo study. Science, 283(5409), 1908–1911.

    Article  Google Scholar 

  • Peterson, J. B., & Carson, S. (2000). Latent Inhibit ion and Openness to Experience in a high-achieving student population. Personality and Individual Differences, 28(2), 323–332.

    Article  Google Scholar 

  • Peterson, J. B., Smith, K. W., & Carson, S. (2002). Openness and extraversion are associated with reduced latent inhibition: replication and commentary. Personality and Individual Differences, 33(7), 1137–1147.

    Article  Google Scholar 

  • Petsche, H. (1996). Approaches to verbal, visual and musical creativity by EEG coherence analysis. Int J Psychophysiol, 24(1–2), 145–159.

    Article  Google Scholar 

  • Preusse, F., van der Meer, E., Deshpande, G., Kruege r, F., & Wartenburger, I. (2011). Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning. [Article]. Frontiers in Human Neuroscience, 5, 14.

    Google Scholar 

  • Raven, J. (2000). The Raven’s Progressive Matrices: Change and Stability over Culture and Time. Cognitive Psychology, 41(1), 1–48.

    Article  Google Scholar 

  • Razumnikova, O. M. (2007). Creativity related cortex activity in the remote associates task. Brain research bulletin, 73(1–3), 96–102.

    Article  Google Scholar 

  • Razumnikova, O. M., Volf, N. V., & Tarasova, I. V. ( 2009). Strategy and results: Sex differences in electrographic correlates of verbal and figural creativity. Human Physiology, 35(3), 285–294.

    Article  Google Scholar 

  • Rose, M., Haider, H., & Buchel, C. (2005). Unconscio us detection of implicit expectancies. J Cogn Neurosci, 17(6), 918–927.

    Article  Google Scholar 

  • Ross, A. J., & Sachdev, P. S. (2004). Magnetic reson ance spectroscopy in cognitive research. Brain Research Reviews, 44(2–3), 83–102.

    Article  Google Scholar 

  • Seitz, J. A. (1999). Albert Einstein’s brain. Lancet, 354(9192), 1822–1823.

    Article  Google Scholar 

  • Simonton, D. K. (1999). Creativity as Blind Variatio n and Selective Retention: Is the Creative Process Darwinian? Psychological Inquiry, 10(4), 309–328.

    Google Scholar 

  • Simonton, D. K. (2003). Scientific creativity as con strained stochastic behavior: the integration of product, person, and process perspectives. Psychol Bull, 129(4), 475–494.

    Article  Google Scholar 

  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487–1505.

    Google Scholar 

  • Sternberg, R. J. (2005). Handbook of creativity. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J. (2007). Right answer to the wrong question: A reply to Jung and Haier. Behavioral and Brain Sciences, 30(2), 170–171.

    Article  Google Scholar 

  • Tang, C. Y., Eaves, E. L., Ng, J. C., Carpenter, D. M., Mai, X., Schroeder, D. H., et al. (2010). Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI. [Article]. Intelligence, 38(3), 293–303.

    Article  Google Scholar 

  • Thomas Anterion, C., Honore-Masson, S., Dirson, S., & Laurent, B. (2002). Lonely cowboy’s thoughts. Neurology, 59(1812–1813).

    Google Scholar 

  • Torrance, E. P. (1974). Torrance Tests of Creative Thinking: Norms-Technical Manual. Princeton, NJ: Personnel Press/Ginn.

    Google Scholar 

  • Wang, L. Q., Song, M., Jiang, T. Z., Zhang, Y. T., & Yu, C. S. (2011). Regional homogeneity of the resting-state brain activity correlates with individual intelligence. [Article]. Neuroscience Letters, 488(3), 275–278.

    Article  Google Scholar 

  • Wechsler, D. (1981). Wechsler Adult Intelligence Scale (Rev. ed.).

    Google Scholar 

  • Witelson, S. F., Kigar, D. L., & Harvey, T. (1999). The exceptional brain of Albert Einstein. Lancet, 353, 2149–2153.

    Article  Google Scholar 

  • Wonderlick, J. S., Ziegler, D. A., Hosseini-Varnamkhasti, P., Locascio, J. J., Bakkour, A., van der Kouwe, A., et al. (2009). Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging. Neuroimage, 44(4), 1324–1333.

    Article  Google Scholar 

  • Wright, C. I., Williams, D., Feczko, E., Barrett, L. F., Dickerson, B. C., Schwartz, C. E., et al. (2006). Neuroanatomical correlates of extraversion and neuroticism. Cereb Cortex, 16(12), 1809–1819

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Sense Publishers

About this chapter

Cite this chapter

Jung, R.E., Ryman, S.G. (2013). Imaging Creativity. In: Kim, K.H., Kaufman, J.C., Baer, J., Sriraman, B. (eds) Creatively Gifted Students are not like Other Gifted Students. Advances in Creativity and Giftedness, vol 5. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6209-149-8_6

Download citation

Publish with us

Policies and ethics

Societies and partnerships