Skip to main content

How to Allocate the Chemistry Curriculum Between Science and Society

  • Chapter
Teaching Chemistry – A Studybook

Abstract

Chemistry curricula as a whole, or single lesson plans can use different approaches towards the learning of chemistry. Some are arranged parallel to academic chemistry; others provide meaningful contexts to motivate the learning of chemistry. Chemistry curriculum approaches can stem from the structure of the discipline, or history of chemistry, via everyday life contexts, industrial applications, or environmental issues, towards socio-scientific issues. This chapter suggests that every chemistry curriculum and even every single lesson plan uses one of these approaches. Each approach has a different justification, each one has different potential for promoting a certain set of objectives. One has to be aware, that by selecting one of the approaches the curriculum also gives the learner a certain emphasis towards chemistry. An overview about the different objectives and justifications is given to provide a range of possibilities for structuring chemistry curricula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Association for the Advancement of Science (AAAS) (1993). Benchmarks for science literacy. New York: Oxford University Press.

    Google Scholar 

  • Atkin, M. J., & Black, P. J. (2003). Inside science education reform. New York: Teachers College Press.

    Google Scholar 

  • Benett, J., & Lubben, F. (2006). Context-based chemistry: The Salters-approach. International Journal of Science Education, 28, 999–1015.

    Article  Google Scholar 

  • Black, P. J., & Atkin, J. M. (1996). Changing the subject: Innovations in science, mathematics and technology education. London: Routledge.

    Google Scholar 

  • Breiting, S., Mayer, M., & Mogensen, F. (2005). Quality criteria for ESD-schools. Vienna: ENSI.

    Google Scholar 

  • Bruner, J. (1962). The process of education. Harvard: Harvard University.

    Google Scholar 

  • Burmeister, M., & Eilks, I. (2012). Evaluating plastics to promote Education for Sustainable Development (ESD) in chemistry education. Chemistry Education Research and Practice, 13, 93–102.

    Article  Google Scholar 

  • Burmeister, M., Rauch, F., & Eilks, I. (2012). Education for Sustainable Development (ESD) and secondary school chemistry education. Chemistry Education Research and Practice, 13, 59–68.

    Article  Google Scholar 

  • De Boer, G. E. (1991). A history of ideas in science education. Columbia: Teachers College Press.

    Google Scholar 

  • De Jong, O. (2006). Making chemistry meaningful: conditions for successful context-based teaching. Educación Química, 17, 215–226.

    Google Scholar 

  • Duranti, A., & Goodwin, C. (eds.). (1992). Rethinking context: Language as an interactive phenomenon. Cambridge: Cambridge University.

    Google Scholar 

  • Eilks, I. (2002). Teaching ‘Biodiesel’: A sociocritical and problem-oriented approach to chemistry teaching, and students’ first views on it. Chemistry Education Research and Practice, 3, 67–75.

    Article  Google Scholar 

  • Eilks, I. (2012). Teachers’ ways through the particulate nature of matter in lower secondary chemistry teaching: A continued change of different models vs. a coherent conceptual structure? In G. Tsaparlis & H. Sevian (eds.), Concepts of matter in science education. Dordrecht: Springer (forthcoming).

    Google Scholar 

  • Eilks, I., Nielsen, J. A., & Hofstein, A. (2012). Learning about the role of science in public debate as an essential component of scientific literacy. In C. Bruguière, P. Clément, & A. Tiberghien (eds.), Book of selected presentations, ESERA Conference Lyon 2011 (forthcoming).

    Google Scholar 

  • Elmose, S., & Roth, W.-M. (2005). Allgemeinbildung: Readiness for living in a risk society. Journal of Curriculum Studies, 37, 11–34.

    Article  Google Scholar 

  • Feierabend, T., & Eilks, I. (2011). Teaching the societal dimension of chemistry using a socio-critical and problem-oriented lesson plan on bioethanol usage. Journal of Chemical Education, 88, 1250–1256.

    Article  Google Scholar 

  • Gilbert, J. K. (2006). On the nature of context in chemical education. International Journal of Science Education, 28, 957–976.

    Article  Google Scholar 

  • Greeno, J. G. (1998). The situativity of knowing, learning, and research. American Psychologist, 53, 5–26.

    Article  Google Scholar 

  • Harms, N. C., & Yager, R. E. (1981). What research says to the science teacher. Washington: NSTA.

    Google Scholar 

  • Hart, C. (2002). Framing curriculum discursively: Theoretical perspectives on the experience of VCE physics. International Journal of Science Education, 24, 1055–1077.

    Article  Google Scholar 

  • Hodson, D. (2008). Towards scientific literacy: A teachers’ guide to the history, philosophy and sociology of science. Rotterdam: Sense.

    Google Scholar 

  • Hofstein, A., Eilks, I., & Bybee, R. (2011). Societal issues and their importance for contemporary science education: A pedagogical justification and the state of the art in Israel, Germany and the USA. International Journal of Science and Mathematics Education, 9, 1459–1483.

    Article  Google Scholar 

  • Hofstein, A., & Kesner, M. (2006). Industrial chemistry and school chemistry: Making chemistry studies more relevant. International Journal of Science Education, 28, 1017–1039.

    Article  Google Scholar 

  • Holbrook, J. (1998). Operationalising scientific and technological literacy – A new approach to science teaching. Science Education International, 9, 13–18.

    Google Scholar 

  • Holbrook, J., & Rannikmäe, M. (2007). The nature of science education for enhancing scientific literacy. International Journal of Science Education, 29, 1347–1362.

    Article  Google Scholar 

  • Holman, J. (1986). Science and technology in society. General guide for teachers. Hatfield Herts: ASE.

    Google Scholar 

  • Holman, J. (1987). Resources or courses? Contrasting approaches to the introduction of industry and technology to the secondary curriculum. School Science Review, 68, 432–437.

    Google Scholar 

  • Johnstone, A. H. (1981). Chemical education research-facts, findings and consequences. Chemistry in Britain, 17, 130–135.

    Google Scholar 

  • Johnstone, A. H. (2006).Chemical education in Glasgow in perspective. Chemistry Education Research and Practice, 7, 49–63.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. K. (2002). Models and modeling in chemical education. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, & J. H. Van Driel (eds.), Chemical education: Towards research-based practice (pp. 47–68). Dordrecht: Kluwer.

    Google Scholar 

  • Keller, J. M. (1983). Motivational design of instruction. In C. M. Reigeluth (ed.), Instructional design theories: An overview of their current status (pp. 386–434). Hillsdale: Lawremce Erlbaum.

    Google Scholar 

  • KMK (2004). Bildungsstandards im Fach Chemie für den Mittleren Bildungsabschluss. München: Luchterhand.

    Google Scholar 

  • Kyburz-Graber, R., Nagel, U., & Odermatt, F. (eds.) (2010). Handeln statt hoffen. Materialien zur Bildung für Nachhaltige Entwicklung für die Sekundarstufe 1. Zug: Klett.

    Google Scholar 

  • Marks, R., & Eilks, I. (2009). Promoting scientific literacy using a socio-critical and problem-oriented approach to chemistry teaching: Concept, examples, experiences. International Journal of Science and Environmental Education, 4, 131–145.

    Google Scholar 

  • Marks, R., Bertram, S., & Eilks, I. (2008). Learning chemistry and beyond with a lesson plan on potato crisps, which follows a socio-critical and problem-oriented approach to chemistry lessons – A case study. Chemistry Education Research and Practice, 9, 267–276.

    Article  Google Scholar 

  • Mc Comas, W. F. (2004). The nature of science in science education. Dordrecht: Kluwer.

    Google Scholar 

  • Merrill, R. J., & Ridgway. D. W. (1969). The CHEMStudy curriculum improvement project. San Fransisco: W. H. Freeman.

    Google Scholar 

  • Millar, R. (2006). Twenty-first century science: insights from the design and implementation of a scientific literacy approach in school science. International Journal of Science Education, 28, 1499–1521.

    Article  Google Scholar 

  • Nentwig, P., Parchmann, I., Gräsel, C., Ralle, B., & Demuth, R. (2007). Chemie im Kontext – A new approach to teaching chemistry, its principles and first evaluation data. Journal of Chemical Education, 84, 1439–1444.

    Article  Google Scholar 

  • Newton, D. P. (1988). Relevance and science education. Educational Philosophy and Theory, 20(2), 7–12.

    Article  Google Scholar 

  • National Curriculum (2004). National Curriculum handbook for secondary teachers in England. London: QCDA.

    Google Scholar 

  • NRC (National Research Council) (1996). National science education standards. Washington: National Academy Press.

    Google Scholar 

  • OECD (2006). OECD programme for international studies assessment (PISA) on line. www.pisa.oecd.org/dataoecd/30/17/39703267.pdf.

  • Parchmann, I., Grâsel, C., Baer, A., Nentwig, P., Demuth, R., & Ralle, B. (2006). Chemie im Kontext – A symbiotic implementation of a context-based teaching and learning approach. International Journal of Science Education, 28, 1041–1062.

    Article  Google Scholar 

  • Pilot, A., & Bulte, A. M. W. (2006). The use of “contexts” as a challenge for the chemistry curriculum: Its successes and the need for further development and understanding. International Journal of Science Education, 28, 1087–1112.

    Article  Google Scholar 

  • Rauch, F. (2002). The potential of Education for Sustainable Development for reform in schools. Environmental Education Research, 8, 43–52.

    Article  Google Scholar 

  • Rauch, F. (2004). Education for sustainability: A regulative idea and trigger for innovation. In W. Scott & S. Gough (eds.), Key issues in sustainable development and learning: A critical review (pp. 149–151). London: Roudlege Falmer.

    Google Scholar 

  • Reid, N. (2000). The presentation of chemistry logically or application-led. Chemistry Education Research and Practice, 1, 381–392.

    Article  Google Scholar 

  • Roberts, D. A. (1982). Developing the concept of “curriculum emphasis” in science education. Science Education, 66, 243–260.

    Article  Google Scholar 

  • Rutherford, F. J., & Ahlgren, A. (1989). Science for all Americans: The project 2061. New York: Oxford University.

    Google Scholar 

  • Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research Science Teaching, 41, 513–536.

    Article  Google Scholar 

  • Sadler, T.D. (2011). Socio-scientific issues in the classroom. Heidelberg: Springer.

    Book  Google Scholar 

  • Sadler, T. D., & Zeidler, D. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46, 909–921.

    Article  Google Scholar 

  • Schwartz, A. T. (2006). Contextualized chemistry education: The American experience. International Journal of Science Education, 28, 977–998.

    Article  Google Scholar 

  • Solomon, J., & Aikenhead, G. (eds.) (1994). STS education: international perspectives on reform. New York: Teachers College Press.

    Google Scholar 

  • UNESCO. (2006). Framework for the UNDESD international implementaton scheme. Paris: UNESCO.

    Google Scholar 

  • Van Berkel, B. (2005). The structure of current school chemistry. Utrecht: cdβ.

    Google Scholar 

  • Van Berkel, B., De Vos, W., Verdonk, A. H., & Pilot, A. (2000). Normal science education and its dangers: The case of school chemistry. Science & Education, 9, 123–159.

    Article  Google Scholar 

  • Van den Akker, J. (1998). The science curriculum: Between ideals and outcomes. In B. Fraser & K. Tobin (eds.), International Handbook of Science Education (pp. 421–447). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Van Driel, J. H., Bulte, A. M. W., & Verloop, N. (2007). The relationship between teachers’ general beliefs about teaching and learning and their domain specific curricular beliefs. Learning and Instruction, 17, 156–1717.

    Article  Google Scholar 

  • Wandersee, J. H., & Baudoin Griffard, P. (2002). The history of chemistry: Potential and actual contributions to chemical education. In J. K. Gilbert, O. De Jong, R. Just, D. F. Treagust, & J. H. Van Driel (eds.), Chemical education: Towards research-based oractice (pp. 29–46). Dordrecht: Kluwer.

    Google Scholar 

  • Ware, S., & Tinnesand, M. (2005). Chemistry in the Community (ChemCom): Chemistry for future citizens. In P. Nentwig, & D. Waddington (eds.), Making it relevant: Context-based learning of science (pp. 91–120). Munster: Waxmann.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Sense Publishers

About this chapter

Cite this chapter

Eilks, I., Rauch, F., Ralle, B., Hofstein, A. (2013). How to Allocate the Chemistry Curriculum Between Science and Society. In: Eilks, I., Hofstein, A. (eds) Teaching Chemistry – A Studybook. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6209-140-5_1

Download citation

Publish with us

Policies and ethics

Societies and partnerships