Skip to main content

Part of the book series: International Technology Education Studies ((ITES,volume 9))

  • 892 Accesses

Abstract

Our current society is deeply influenced and shaped by artefacts, ideas and values of science and technology, for example in health care, energy, transportation and communication. Also, issues such as pollution and nuclear energy become objects of public debate. In their jobs, professionals are confronted with an increased use of information and communication technologies and the need for flexibility and life-long learning. ‘Non-sciencejobs’, such as nursing, increasingly require an understanding of science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Association for the Advancement of Science (1993). Benchmarks for Science Literacy. New York: Oxford University Press.

    Google Scholar 

  • Baartman, L. K. J., & De Bruijn, E. (submitted). Integrating knowledge, skills and attitudes: Conceptualising learning processes towards vocational competence.

    Google Scholar 

  • Bakker, A., Hoyles, C., Kent, P., & Noss, R. (2006). Improving work processes by making the invisible visible. Journal of Education and Work, 19, 343-361.

    Article  Google Scholar 

  • Bakker, A., Wijers, M., Akkerman, S., & Gravemeijer, K. (2010). The influence of technology on what vocational students need to learn about statistics: The case of laboratory analysists. Paper presented at the ICOTS 2010.

    Google Scholar 

  • Bakker, A., Kent, P., Noss, R., & Hoyles, C. (2009). Alternative representations of statistical measures in computer tools to promote communication between employees in automotive manufacturing. Technology Innovations in Statistics Education, 3, 1–31.

    Google Scholar 

  • Barnett, M. (1995). Literacy, technology and technological literacy. International Journal of Technology and Design Education, 5, 119–137.

    Article  Google Scholar 

  • Benenson, G. (2001). The unrealized potential of everyday technology as a context for learning. Journal of Research in Science Teaching, 38, 730–745.

    Article  Google Scholar 

  • Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., & Rumble, M. (2010). Draft White Paper 1. Developing 21st century skills. University of Melbourne: Assessment and Teaching of 21st Century Skills. See:http://www.atc21s.org

  • Burklund, C., Garvin, K., Lawrence, N., & Yoder, J. (1989). A guide to developing higher order thinking across the curriculum. Des Moines: Iowa Department of Education.

    Google Scholar 

  • Costa, A. L. (n.d.). Components of a well developed thinking skills program. Downloaded August 11, 2010 from:http://www.newhorizons.org/strategies/thinking/costa2.htm

  • Costa, A. L. (2000). Describing the habits of mind. In A. L. Costa & B. Kallick (Eds.), Discovering & Exploring Habits of Mind (Vol. 1, pp. 21-41). Alexandria, Virginia: ASCD

    Google Scholar 

  • Dede, C. (2009). Comparing frameworks for 21st century skills. In J. Bellanca & R. Brandt (Eds.) 21st Century Skills, pp. 51–76. Bloomington, IN: Solution Tree Press.

    Google Scholar 

  • De Vries, M. J. (2005). The nature of technological knowledge: Philosophical reflections and educational consequences. International Journal of Technology and Design Education, 15, 149–154.

    Article  Google Scholar 

  • Fazio, R. H. (2007). Attitudes as object-evaluation associations of varying strength. Social Cognition, 25, 603-637.

    Article  Google Scholar 

  • Ferguson, E. S. (1977). The Mind's Eye: Nonverbal Thought in Technology. Science, 197, 827–836.

    Article  Google Scholar 

  • Forman, S. L., & Steen, L.A. (1994). Mathematics for work. Bulletin of the International Commission on Mathematical Instruction (ICMI), 37, 1–6. Downloaded January, 4, 2010, from:http://www.stolaf.edu/people/steen/Papers/work.html

  • Forman, S.L., & Steen, L.A. (2000). Making authentic mathematics work for all students. In A. Bessot& J. Ridgway (Eds.), Education for Mathematics in the Workplace. Dordrecht, the Netherlands: Kluwer Academic.

    Google Scholar 

  • Goos, M., & Manning, A. (2007). Lousy and lovely jobs: The rising of polarization of work in Britain. The Review of Economics and Statistics, 89, 118–133.

    Article  Google Scholar 

  • Gopinathan, S. (1999). Preparing for the next rung: Economic restructuring and educational reform in Singapore. Journal of Education and Work, 12, 295–308.

    Article  Google Scholar 

  • Gravemeijer, K. (2009). Leren voor later [Learning for the future]. Inaugural address, Eindhoven University of Technology, the Netherlands.

    Google Scholar 

  • Gravemeijer, K. (2010). Mathematics Education and the Information Society. Paper presented at the EIMI Conference, October 2010.

    Google Scholar 

  • Hancock, C., Kaput, J. J., & Goldsmith, L. T. (1992). Authentic inquiry with data: Critical barriers to classroom implementation. Educational Psychologist, 27, 337–364.

    Article  Google Scholar 

  • Holbrook, J., & Rannikmae, M. (2007). The nature of science education for enhancing scientific literacy. International Journal of Science Education, 29, 1347–1362.

    Article  Google Scholar 

  • Kaput, J., & Schorr, R. (2007). Changing representational infrastructures changes most everything: The case of SimCalc, Algebra, and Calculus. In G. Blume & K. Heid (Eds.) Research on technology in the learning and teaching of mathematics: Syntheses and perspectives (pp. 211–253). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Krathwohl, D. R. (2002). A revision of Bloom’s Taxonomy: An overview. Theory into Practice, 41, 212-218.

    Article  Google Scholar 

  • Latour, B. (1986). Visualisation and cognition: Drawing things together. In H. Kulick (Ed.) Knowledge and Society. Studies in the sociology of the culture past and present, pp. 1–40. Stamford, CT: JAI.

    Google Scholar 

  • Lesgold, A. (2009). Better schools for the 21st century. What is needed and what will it take to get improvement. University of Pittsburgh.

    Google Scholar 

  • Levy, F., & Murnane, J. (2005). How computerized work and globalization shape human skill demands. First International Conference on Globalization and Learning. Stockholm, Sweden.

    Google Scholar 

  • Millar, R., & Osborne, J. (1998). Beyond 2000. Science education for the future. The report of a seminar series funded by the Nuffield Foundation. Retrieved 16 December 2009 from:http://www.kcl.ac.uk/content/1/c6/02/18/24/b2000.pdf

  • Murphy, C. (2003). Literature review in primary science and ICT. Futurelab Series, report 5. Retrieved October 14, 2009 from:http://www.futurelab.org.uk

  • Noss, R., Bakker, A., Hoyles, C., & Kent, P. (2007). Situating graphs as workplace knowledge. Educational Studies in Mathematics, 65, 367–384.

    Article  Google Scholar 

  • Osborne, J. (2007). Science education for the twenty first century. Eurasia Journal of Mathematics, Science & Technology Education, 3, 173–184.

    Google Scholar 

  • Pozzi, S., Noss, R., & Hoyles, C. (1998). Tools in practice, mathematics in use. Educational Studies in Mathematics, 36, 105–122.

    Article  Google Scholar 

  • Resnick, L.B. (1987). The 1987 presidential address: Learning in school and out. Educational Researcher, 16 (9), 13–20.

    Google Scholar 

  • Rodrigues, S., Tytler, R., Darby, L., Hubber, P., Symington, D., & Edwards, J. (2007). The usefulness of a science degree: The ‘lost voices’ of science trained professionals. International Journal of Science Education, 29, 1411–1433.

    Article  Google Scholar 

  • Roth, W. M. (2001). Learning science through technological design. Journal of Research in Science Teaching, 38, 768–790.

    Article  Google Scholar 

  • Roth, W. M. (2005). Mathematical inscriptions and the reflexive elaboration of understanding: An ethnography of graphing and numeracy in a fish hatchery. Mathematical Thinking and Learning, 7, 75–110.

    Article  Google Scholar 

  • Savelsbergh, E. (2007). Dynamisch modelleren. Aanzet tot een curriculum [Dynamic modelling. The start of a curriculum]. Nieuw Archief voor Wiskunde, 8, 207–213.

    Google Scholar 

  • Slangen, L., Van Keulen, H., & Gravemeijer, K. (2010). What pupils can learn from working with robotic direct manipulation environments. International Journal of Technology and Design Education. DOI 10.1007/s10798-010-9130-8.

    Google Scholar 

  • Van der Kooij, H. (2002). Wiskundig vaardig. De bijdrage van wiskunde aan (technische) beroepscompetenties [The contribution of mathematicsto (technical) professional competence]. Exacte vakken en competenties in het beroepsonderwijs. ’s Hertogenbosch, the Netherlands: Cinop.

    Google Scholar 

  • Van Eijck, M., & Claxton, N.X. (2008). Rethinking the notion of technology in education: Technoepistemology as a feature inherent to human praxis. ScienceEducation, 93, 218–232.

    Google Scholar 

  • Van Keulen. H., & Walma van der Molen, J. (Eds.). Onderzoek naar wetenschap en techniek in het Nederlandse basisonderwijs [Research into science and technology in Dutch primary education]. The Hague, The Netherlands: Platform Bèta Techniek.

    Google Scholar 

  • Voogt, J., & Pareja Roblin, H. (2010). 21st Century Skils. Discussion paper. Enschede, the Netherlands: University of Twente.

    Google Scholar 

  • Wynne, B. (1991). Knowledges in context. Science, Technology, & Human Values, 16, 111–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Sense Publishers

About this chapter

Cite this chapter

Baartman, L.K.J., Gravemeijer, K. (2011). Science and Technology Education for the Future. In: Vries, M.J.d., Kuelen, H.v., Peters, S., Molen, J.W.v.d. (eds) Professional Development for Primary Teachers in Science and Technology. International Technology Education Studies, vol 9. SensePublishers. https://doi.org/10.1007/978-94-6091-713-4_3

Download citation

Publish with us

Policies and ethics

Societies and partnerships