Skip to main content

Applications of Hopkinson Bar Technique for Capability Testing of High-Energy Absorption Materials

  • Conference paper
  • First Online:
Security-Related Advanced Technologies in Critical Infrastructure Protection

Abstract

The study shows the great potential and valuable impact of research on high-energy absorption building materials in the area of protect built components of critical infrastructures. The possibility of testing samples of various materials (granular, cellular and polymer materials) based on Hopkinson bar technology in various configurations of the sample and measuring bars settings was discussed. An example of a split Hopkinson pressure bar test stand with its components is shown. The dynamic behavior of energy-absorbing building materials was presented in more detail on the example of sand, wood and foam in the form of strain - stress and strain - strain rate graphs depending on various variables, e.g. different sand moisture or wood sample temperature. In addition, in the subject of high-energy absorption materials, definitions of issues were discussed along with example diagrams of dynamic analysis: energy absorption Q(ε), energy absorption efficiency E(ε) and ideal energy absorption efficiency I(ε).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chmielewski, R., Kruszka, L., Rekucki, R., Sobczyk, K.: Experimental investigation of dynamic behavior of silty sand. Arch. Civ. Eng. LXVII, 481–498 (2021). https://doi.org/10.24425/ACE.2021.136484

    Article  Google Scholar 

  2. Sobczyk, K., Chmielewski, R., Kruszka, L., Rekucki, R.: Strength characterization of soils’ properties at high strain rates using the Hopkinson technique – a review of experimental testing. Materials. 15, 274 (2022). https://doi.org/10.3390/ma15010274

    Article  ADS  Google Scholar 

  3. Li, T., Li, G., Ding, Y., Kong, T., Liu, J., Zhang, G., Zhang, N.: Impact response of unsaturated sandy soil under triaxial stress. Int. J. Impact Eng. 160, 104062 (2021). https://doi.org/10.1016/j.ijimpeng.2021.104062

    Article  Google Scholar 

  4. Lv, Y., Li, X., Wang, Y.: Particle breakage of calcareous sand at high strain rates. Powder Technol. 366, 776–787 (2020). https://doi.org/10.1016/j.powtec.2020.02.062

    Article  Google Scholar 

  5. Bragov, A., Konstantinov, A., Lomunov, A.: Research on the anisotropic properties of wood at high-rate loading. In: Silva Gomes, J.F., Meguid, S.A. (eds.) Proceedings IRF2018: 6th International Conference Integrity-Reliability-Failure, 7144. INEGI/FEUP (2018). ISBN:978-989-20-8313-1

    Google Scholar 

  6. Gilbertson, C.G.: Dynamic properties of wood using the Split-Hopkinson Pressure Bar. Dissertation. Michigan Technological University (2011)

    Google Scholar 

  7. He, Y., Gao, M., Zhao, H., Zhao, Y.: Behaviour of foam concrete under impact loading based on SHPB experiments. Shock Vib. (2019). https://doi.org/10.1155/2019/2065845

  8. Chen, Y., Wang, B., Zhou, J., Kong, X., Zhu, N., Zhou, Y.: Dynamic mechanical properties of AACs under impact loading. J. Vib. Shock. 38, 18 (2019). https://doi.org/10.13465/j.cnki.jvs.2019.18.028

    Article  Google Scholar 

  9. Mane, J.V., Chandra, S., Sharma, S., Ali, H., Chavan, V.M., Manjunath, B.S., Patel, R.J.: Mechanical property evaluation of polyurethane foam under quasi-static and dynamic strain rates – an experimental study. Proc. Eng. 173, 726–731 (2017). https://doi.org/10.1016/j.proeng.2016.12.160

    Article  Google Scholar 

  10. Peroni, M., Solomos, G., Babcsan, N.: Development of a Hopkinson bar apparatus for testing soft materials: application to a closed-cell aluminum foam. Materials. 9, 27 (2016). https://doi.org/10.3390/ma9010027

    Article  ADS  Google Scholar 

  11. Li, X., Mao, H., Xu, K., Miao, C.: A SHPB experimental study on dynamic mechanical property of high-damping rubber. Shock Vib. (2018). https://doi.org/10.1155/2018/3128268

  12. Walley, S.: A History of Hopkinson Bars in Europe. University of Cambridge. https://www.dymat.org/30_years_of_dymat/stephen-hopkinson-bars-in-europe.pdf. Last accessed 2022/01/14

  13. Web of Science Homepage. https://www-1webofscience-1com-100003et80008.han.wat.edu.pl/wos/alldb/summary/. Last accessed 2022/01/14

  14. Springer Link Homepage. https://link.springer.com/. Last accessed 2022/01/14

  15. Sobczyk, K., Kruszka, L., Chmielewski, R., Rekucki, R.: Performance characteristics of Hopkinson’s set-up pneumatic launcher. Acta Polytech. 61, 552–561 (2021). https://doi.org/10.14311/AP.2021.61.0552

    Article  Google Scholar 

  16. Kruszka, L.: Experimental techniques and measurements in impact engineering using Hopkinson bar technique. Key Eng. Mater. 715, 3–12 (2016). https://doi.org/10.4028/www.scientific.net/kem.715.3

    Article  Google Scholar 

  17. Bragov, A., Igumnov, L., Konstantinov, A., Lomunov, A., Litvinchuk, S.: Use of Hopkinson method and its modifications in the USSR and Russia. In: Conference: Hopkinson Centenary Conference Cambridge, Cambridge (2014)

    Google Scholar 

  18. Sobczyk, K., Chmielewski, R., Kruszka, L.: The concept of experimental research on the behavior of sand cover material for protective shelters for civilians. Saf. Eng. Anthropog. Objects. 1 (2020). https://doi.org/10.37105/iboa.51

  19. Bragow, A., Lomunov, A., Chmielewski, R., Kruszka, L.: Study of dynamic properties of selected soils at high rate of loading. Biuletyn WAT. LI, 59–72 (2002) (in Polish)

    Google Scholar 

  20. Bragov, A., Demenko, P., Lomunov, A., Sergeichev, I., Kruszka, L.: Investigation of behavior of the materials of different physical nature using the Kolsky method and its modifications. In: Nowacki, W., Klepaczko, J. (eds.) New Experimental Methods in Material Dynamics and Impact, vol. 3, pp. 337–348. Polish Academy of Sciences, Warsaw (2001)

    Google Scholar 

  21. Maiti, S., Gibson, L., Ashby, M.: Deformation and energy absorption diagrams for cellular solids. Acta Metallurgica. 32(11), 1963–1975 (1984). https://doi.org/10.1016/0001-6160(84)90177-9

    Article  Google Scholar 

  22. Miltz, J., Gruenbaum, G.: Evaluation of cushioning properties of plastic foams from compressive measurements. Polym. Eng. Sci. 21(15), 1010–1014 (1981). https://doi.org/10.1002/pen.760211505

    Article  Google Scholar 

  23. Bitay, E., Tóth, L., Kovács, T.A., Nyikes, Z., Gergely, A.L.: Experimental study on the influence of TiN/AlTiN PVD layer on the surface characteristics of hot work tool steel. Appl. Sci. Basel. 2076–3417, 11–19 (2021). https://doi.org/10.3390/app11199309

    Article  Google Scholar 

  24. Tóth, L., Kovács, T.A., Nyikes, Z., Ghica, V.-G.: Increasing the H13 tool steel wear resistance by plasma nitriding and multilayer PVD coating. UPB Sci. Bull. Ser. B: Chem. Mater. Sci. (1454–2331). 83(2), 273–282 (2021)

    Google Scholar 

  25. Kovács, T. A., Mhatre, U. Nyikes, Z., Bitay, E.: Surface modification innovation for wear resistance increasing. IOP Conference Series: Materials Science and Engineering (1757-8981 1757-899X): 613 p. 012039. (2019). doi:https://doi.org/10.1088/1757-899X/613/1/012039

  26. Kovács, T.A., Tóth, L., Nyikes, Z., Ghica, V.-G.: The analysis of microstructural changes depending on the electro-acoustic effect under the ultrasonic welding process of aluminum foils. UPB Sci. Bull. Ser. B: Chem. Mater. Sci. (1454–2331). 82(4), 213–222 (2020)

    Google Scholar 

  27. Nyikes, Z., Kovács, T.A., Tokody, D.: In situ testing of rail damages in accordance with industry 4.0. J. Phys. Conf. Ser. (1742–6588 1742–6596). 1045, 1–6 (2018). https://doi.org/10.1088/1742-6596/1045/1/012032

    Article  Google Scholar 

  28. Balázs, Á., Nyikes, Z., Kovács, T.A.: Building protection with composite materials application. Key Eng. Mater. (1013–9826 1662–9795). 755, 286–291 (2017). https://doi.org/10.4028/www.scientific.net/KEM.755.286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopold Kruszka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kruszka, L., Sobczyk, K. (2022). Applications of Hopkinson Bar Technique for Capability Testing of High-Energy Absorption Materials. In: Kovács, T.A., Nyikes, Z., Fürstner, I. (eds) Security-Related Advanced Technologies in Critical Infrastructure Protection. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2174-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-2174-3_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-2173-6

  • Online ISBN: 978-94-024-2174-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics