Skip to main content

Collaborative Robots in the Critical Infrastructure Area Review

  • Conference paper
  • First Online:
Security-Related Advanced Technologies in Critical Infrastructure Protection

Abstract

Cobotics or Human-robot Collaboration is a key technology in the industry. This paper presents the historical background of robotics and the trends genesis with highlights the current and potential limits of this interactions developments. The goal of the authors is to review the literature and introduce the collected knowledge in this research field. Robotics in the last ten years increased grandiosely in a wide range of the critical infrastructure area. The review was made after numerous references knew.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kafi, A., Kovács, T.A., Tóth, L., Nyikes, Z.: Robots application for welding. Műszaki Tudományos Közlemények. 12, 50–54 (2020). https://doi.org/10.33894/mtk-2020.12.07

    Article  Google Scholar 

  2. Altin, H., Pedaste, M.: Learning approaches to applying robotics in science education. J. Balt. Sci. Educ. 12(3), 365 (2013)

    Article  Google Scholar 

  3. Pale, T.: La robotique collaborative. Promouvoir un outil de développement en jugulant la faiblesse des infrastructures physiques en Afrique. Communication, technologies et développement (8), (2020)

    Google Scholar 

  4. Czudek, S.: Robotic surgery–a taste of Hollywood? Videosurgery and Other Miniinvasive Techniques. 8(2), 95 (2013)

    Article  Google Scholar 

  5. Gurgul, M.: Industrial Robots and Cobots: Everything You Need to Know About Your Future Co-Worker (2018)

    Google Scholar 

  6. Grigorescu, S.M., Lüth, T., Fragkopoulos, C., Cyriacks, M., Gräser, A.: A BCI-controlled robotic assistant for quadriplegic people in domestic and professional life. Robotica. 30(3), 419–431 (2012)

    Article  Google Scholar 

  7. Sheridan, T.B.: Human–robot interaction: status and challenges. Hum. Factors. 58(4), 525–532 (2016)

    Article  Google Scholar 

  8. Atkeson, C.G., Hale, J.G., Pollick, F., Riley, M., Kotosaka, S., Schaul, S., Kawato, M.: Using humanoid robots to study human behavior. IEEE Intell. Syst. Their Appl. 15(4), 46–56 (2000)

    Article  Google Scholar 

  9. Oriolo, G., Vendittelli, M., Ulivi, G.: Online map building and navigation for autonomous mobile robots. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2900–2906. IEEE (1995)

    Chapter  Google Scholar 

  10. Billard, A., Kragic, D.: Trends and challenges in robot manipulation. Science. 364(6446) (2019)

    Google Scholar 

  11. Thuriet, J.: Étude et conception de systèmes de validation de tâches d’assemblage: participation à la conception d’un robot collaboratif destiné à une chaîne de montage automobile Doctoral dissertation. Université Laval. (2019)

    Google Scholar 

  12. Gualtieri, L., Rauch, E., Vidoni, R.: Emerging research fields in safety and ergonomics in industrial collaborative robotics: a systematic literature review. Robot. Comput. Integr. Manuf. 67, 101998 (2021)

    Article  Google Scholar 

  13. Robla-Gómez, S., Becerra, V.M., Llata, J.R., Gonzalez-Sarabia, E., Torre-Ferrero, C., Perez-Oria, J.: Working together: a review on safe human-robot collaboration in industrial environments. IEEE Access. 5, 26754–26773 (2017)

    Article  Google Scholar 

  14. Colgate, J. E., Edward, J., Peshkin, M. A., Wannasuphoprasit, W.: Cobots: Robots for Collaboration with Human Operators. Proceeding of the International Mechanical Engineering Congress and Exhibition, Atlanta, GA, DSC, vol. 58, pp. 433–439. (1996)

    Google Scholar 

  15. Wannasuphoprasit, W., Akella, P., Peshkin, M., Colgate, J.E.: Cobots: a novel material handling technology. In: Proceedings of International Mechanical Engineering Congress and Exposition. Anaheim, ASME 98-WA/MH-2 (1998)

    Google Scholar 

  16. Goodrich, M.A., Schultz, A.C.: Human-Robot Interaction: A Survey. Now Publishers Inc, Outside North America (2008)

    MATH  Google Scholar 

  17. Casper, J., Murphy, R.R.: Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Trans. Syst. Man Cybern. B. Cybern. 33(3), 367–385 (2003)

    Article  Google Scholar 

  18. Evjemo, L.D., Gjerstad, T., Grotli, E.I., Sziebig, G.: Trends in smart manufacturing: role of humans and industrial robots in smart factories. Curr. Robot. Rep. 1(2), 35–41 (2020)

    Article  Google Scholar 

  19. Mital, A.: What role for humans in computer integrated manufacturing? Int. J. Comput. Integr. Manuf. 10(1–4), 190–198 (1997)

    Article  Google Scholar 

  20. Akella, P., Peshkin, M., Colgate, E.D., Wannasuphoprasit, W., Nagesh, N., Wells, J., Peacock, B.: Cobots for the automobile assembly line. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), vol. 1, pp. 728–733. IEEE (1999)

    Chapter  Google Scholar 

  21. Bitonneau, D.: Conception de systèmes cobotiques industriels: approche robotique avec prise en compte des facteurs humains: application à l’industrie manufacturière au sein de Safran et ArianeGroup (Doctoral disserta-tion, Bordeaux) (2018)

    Google Scholar 

  22. Fast-Berglund, A., Palmkvist, F., Nyqvist, P., Ekered, S., Akerman, M.: Evaluating cobots for final assembly. Proc. CIRP. 44, 175–180 (2016)

    Article  Google Scholar 

  23. Royakkers, L., Van Est, R.: A literature review on new robotics: automation from love to war. Int. J. Soc. Robot. 7(5), 549–570 (2015)

    Article  Google Scholar 

  24. Abdellatif, M.: Design of an autonomous wall painting robot. In: First International Symposium on Socially and Technically Symbiotic Systems. Okayama, Japan (2012)

    Google Scholar 

  25. Afsari, K., Gupta, S., Afkhamiaghda, M., Lu, Z.: Applications of collaborative industrial robots in building construction. In: 54th ASC Annual International Conference Proceedings, pp. 472–479 (2018)

    Google Scholar 

  26. El-Haouzi, H.B., Valette, E.: Human system integration as a key approach to design manufacturing control system for Industry 4.0: challenges, barriers, and opportunities. IFAC–PapersOnLine. 54(1), 263–268 (2021)

    Article  Google Scholar 

  27. Michalos, G., Makris, S., Papakostas, N., Mourtzis, D., Chryssolouris, G.: Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach. CIRP J. Manuf. Sci. Technol. 2(2), 81–91 (2010)

    Article  Google Scholar 

  28. Gualtieri, L., Rauch, E., Vidoni, R., Matt, D.T.: An evaluation methodology for the conversion of manual assembly systems into human-robot collaborative workcells. Proc. Manuf. 38, 358–366 (2019)

    Google Scholar 

  29. Djuric, A.M., Urbanic, R.J., Rickli, J.L.: A framework for collaborative robot (CoBot) integration in advanced manufacturing systems. SAE Int. J. Mater. Manuf. 9(2), 457–464 (2016)

    Article  Google Scholar 

  30. Weistroffer, V.: La «cobotique» et l’interaction homme-robot. Intelligences artificielles et humaines, quelles interactions? 10 (2020)

    Google Scholar 

  31. Segura, P., Lobato-Calleros, O., Ramírez-Serrano, A., Soria, I.: Human-robot collaborative systems: structural components for current manufacturing applications. Adv. Indus. Manuf. Eng. 3, 100060 (2021)

    Google Scholar 

  32. Baumgartner, M., Kopp, T., Kinkel, S.: Analysing factory workers’ acceptance of collaborative robots: a web-based tool for company representatives. Electronics. 11(1), 145 (2022)

    Article  Google Scholar 

  33. Rozo, L., Calinon, S., Caldwell, D.G.: Learning force and position constraints in human-robot cooperative transportation. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 619–624. IEEE (2014)

    Chapter  Google Scholar 

  34. Gabler, V., Stahl, T., Huber, G., Oguz, O., Wollherr, D.: A game-theoretic approach for adaptive action selection in close proximity human-robot-collaboration. In: 2017 IEEE International Conference on Robotics and Automation, ICRA, pp. 2897–2903. IEEE (2017)

    Chapter  Google Scholar 

  35. Sylla, N., Bonnet, V., Venture, G., Armande, N., Fraisse, P.: Assessing neuromuscular mechanisms in human-exoskeleton interaction. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1210–1213. IEEE (2014)

    Chapter  Google Scholar 

  36. Moulières-Seban, T., Bitonneau, D., Thibault, J.F., Salotti, J.M., Claverie, B.: Les Interactions Homme-Robot pour la Cobotique Industrielle. In: Ergo’IA (2016)

    Google Scholar 

  37. Gosselin, F., Bidard, C., Brisset, J.: Design of a high fidelity haptic device for telesurgery. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 205–210. IEEE (2005)

    Chapter  Google Scholar 

  38. Stone, R.J.: Haptic feedback: a brief history from telepresence to virtual reality. In: International Workshop on Haptic Human-Computer Interaction, pp. 1–16. Springer, Berlin, Heidelberg (2000)

    Google Scholar 

  39. Dieber, B., Breiling, B., Taurer, S., Kacianka, S., Rass, S., Schartner, P.: Security for the robot operating system. Robot. Auton. Syst. 98, 192–203 (2017)

    Article  Google Scholar 

  40. Sure Controls INC, https://www.surecontrols.com/what-are-collaborative-robots/. Last accessed 23 Dec 2021

  41. Stein, M.K., Kaivo-Oja, J.: Collaborative robots: frontiers of current literature. J. Intell Syst Theor Appl. 3(2), 13–20 (2020)

    Google Scholar 

  42. Gleeson, B., MacLean, K., Haddadi, A., Croft, E., Alcazar, J.: Gestures for industry intuitive human-robot communication from human observation. In: 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 349–356. IEEE (2013)

    Chapter  Google Scholar 

  43. Christensen, H.I., Hager, G.D.: Sensing and estimation Springer Handbook of Robotics, pp. 91–112 (2016)

    Google Scholar 

  44. El Zaatari, S., Marei, M., Li, W., Usman, Z.: Cobot programming for collaborative industrial tasks: an overview. Robot. Auton. Syst. 116, 162–180 (2019)

    Article  Google Scholar 

  45. Chung, W.K., Fu, L.C., Kröger, T.: Motion control. In: Springer handbook of robotics, pp. 163–194. Springer, Cham (2016)

    Chapter  Google Scholar 

  46. Wannasuphoprasit, W., Gillespie, R.B., Colgate, J.E., Peshkin, M.A.: Cobot control. In: Proceedings of International Conference on Robotics and Automation, vol. 4, pp. 3571–3576. IEEE (1997)

    Chapter  Google Scholar 

  47. Morel, G., Bidaud, P.: Experiments on impedance control to derive adaptive strategies. In: Experimental Robotics III, pp. 103–119. Springer, Berlin, Heidelberg (1994)

    Chapter  Google Scholar 

  48. Tan, Y., Lau, D., Liu, M., Bidaud, P., Padois, V.: Minimization of the rate of change in torques during contact transitions for humanoids. In: 2016 European Control Conference (ECC), pp. 401–406. IEEE (2016)

    Chapter  Google Scholar 

  49. Bremard, N., Grisoni, L., De Araujo, B.: Interaction events in contactless gestural systems: from motion to interaction. In: Proceedings of the 2014 International Workshop on Movement and Computing, pp. 166–169 (2014)

    Chapter  Google Scholar 

  50. Kildal, J., Tellaeche, A., Fernández, I., Maurtua, I.: Potential users’ key concerns and expectations for the adoption of cobots. Proc. CIRP. 72, 21–26 (2018)

    Article  Google Scholar 

  51. El Aswad, F.: Contribution au développement d’un système d’acquisition et de reconnaissance des gestes du pied pour commander un système robotique interactif (Doctoral dissertation, Université du Québec à Chicoutimi). (2019)

    Google Scholar 

  52. Bagyinszki Gy., Bitay E.: Innovations in robots and press welding/ Robotok és a sajtoló hegesztések fejlesztései, http://hdl.handle.net/10598/29034 (2016)

  53. TIHAY, D., Perrin, N.: Robotique collaborative: perception et attentes des industriels. Hygiéne et Sécurité du Travail, INRS. 250, 50–57 (2018)

    Google Scholar 

  54. Bounouar, M., Bearee, R., Benchekroun, T. H., Siadat, A.: Etat des lieux de la cobotique industrielle et de la conduite de projet associée. In: acte de 16ème édition Smart colloque (AIP-Primeca), Les Karellis, France (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Nyikes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aichaoui, N.E.Y., Nyikes, Z. (2022). Collaborative Robots in the Critical Infrastructure Area Review. In: Kovács, T.A., Nyikes, Z., Fürstner, I. (eds) Security-Related Advanced Technologies in Critical Infrastructure Protection. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2174-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-2174-3_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-2173-6

  • Online ISBN: 978-94-024-2174-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics