Skip to main content

Material Testing Under Dynamic Loadings – Proper Design of Critical Infrastructure Structural Elements

  • Conference paper
  • First Online:
Security-Related Advanced Technologies in Critical Infrastructure Protection

Abstract

This paper reports on efficient experimental and numerical techniques used in the design of critical infrastructure. A proper design of the critical infrastructure is a key factor to guarantee requiring special protection measures regarding security and safety. The development of computer methods, such as the popular finite element method, has significantly shifted the burden of analysis from laboratory activities to those in front of a computer screen. There is, of course, a profound scientific and economic reason for this: computer simulation allows for significant savings in research due to lower prices, easy repeatability of specimens and interpolation or extrapolation of the research scope. However, excessive reliance on numerical methods can lead to the generation of erroneous results, often far from reality. It is the experiment that provides reliable observation of the actual behaviour of the material, it is the experiment that allows us to obtain data to create constitutive equations. In this paper, a focus is made on experimental and numerical methodology related to the ballistic test of dynamic perforation using a pneumatic gas gun. A thermal chamber is presented which was developed to enrich perforation analysis and results with application to different materials and within a wide range of experimental temperatures from T0 = 293 K to 533 K, whereas the numerical analysis covered a wider range of temperatures reaching 923 K. Constitutive relations and failure criteria are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klosak, M., Rusinek, A., Bendarma, A., Jankowiak, T., Lodygowski, T.: Experimental study of brass properties through perforation test using a thermal chamber for elevated temperatures. Lat. Am. J. Solids Struct. 15(10) (2018)

    Google Scholar 

  2. Kpenyigba, K.M., Jankowiak, T., Rusinek, A., Pesci, R.: Influence of projectile shape on dynamic behaviour of steel sheet subjected to impact and perforation. Thin-Walled Struct. 65, 93–104 (2013)

    Article  Google Scholar 

  3. Jankowiak, T., Rusinek, A., Wood, P.: A numerical analysis of the dynamic behaviour of sheet steel perforated by a conical projectile under ballistic conditions. Finite Elem. Anal. Des. 65, 39–49 (2015)

    Article  Google Scholar 

  4. Bendarma, A., Gourgue, H., Jankowiak, T., Rusinek, A., Kardellass, S., Klosak, M.: Perforation tests of composite structure specimens at wide range of temperatures and strain rates – experimental analysis. Mater. Today Proce. 24, 7–10 (2020)

    Article  Google Scholar 

  5. Klosak, M., Jankowiak, T., Rusinek, A., Bendarma, A., Sielicki, P.W., Lodygowski, T.: Mechanical properties of brass under impact and perforation tests for a wide range of temperatures: experimental and numerical approach. Materials. 13(24), 5821 (2020)

    Article  ADS  Google Scholar 

  6. Klosak, M., Santiago, R., Jankowiak, T., Bendarma, A., Rusinek, A., Bahi, S.: The influence of temperature in the Al 2024-T3 aluminum plates subjected to impact: experimental and numerical approaches. Materials. 14(15), 4268 (2021)

    Article  ADS  Google Scholar 

  7. Massaq, A., Rusinek, A., Klosak, M., Abed, F., El Mansori, M.: A study of friction between composite-steel surfaces at high impact velocities. Tribol. Int. 102, 38–43 (2016)

    Article  Google Scholar 

  8. Lim, S.C., Ashby, M.F., Brunton, J.H.: The effects of sliding conditions on the dry friction of metals. Acta Metall. 37(3), 767–772 (1989)

    Article  Google Scholar 

  9. Rosenberg, Z., Vayig, Y.: On the friction effect in the perforation of metallic plates by rigid projectiles. Int. J. Impact Eng. 149, 103794 (2021)

    Article  Google Scholar 

  10. Bendarma, A., Jankowiak, T., Lodygowski, T., Rusinek, A., Klosak, M.: Experimental and numerical analysis of aluminium alloy AW5005 behavior subjected to tension and perforation under dynamic loading. J. Theor. Appl. Mech. 55(4), 1219–1233 (2017)

    Article  Google Scholar 

  11. Bendarma, A., Jankowiak, T., Rusinek, A., Lodygowski, T., Jia, B., Miguélez, M.H., Klosak, M.: Dynamic behavior of aluminum alloy AW5005 undergoing interfacial friction and specimen configuration in split Hopkinson pressure bar system at high strain rates and temperatures. Materials. 13, 4614 (2020)

    Article  ADS  Google Scholar 

  12. Bendarma, A., Jankowiak, T., Rusinek, A., Lodygowski, T., Klosak, M.: Perforation tests of aluminum alloy specimens for a wide range of temperatures using high-performance thermal chamber-experimental and numerical analysis. In: IOP Conference Series: Materials Science and Engineering Vol. 491, No. 1, p. 012027. IOP Publishing (2019)

    Google Scholar 

  13. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, vol. 21, pp. 541–547 (1983)

    Google Scholar 

  14. Rusinek, A., Zaera, R., Klepaczko, J.R.: Constitutive relations in 3-D for a wide range of strain rates and temperatures – application to mild steels. Int. J. Solids Struct. 44(17), 5611–5634 (2007)

    Article  Google Scholar 

  15. Klosak, M., Bendarma, A., Jankowiak, T., Bahi, S., Rusinek, A.: Aluminium-rubber composite – experimental and numerical analysis of perforation process at ambient and high temperatures. Acta Polytechnica Hungarica (submitted Oct. 17, 2021, in revision)

    Google Scholar 

  16. Perzyna, P.: The constitutive equations for rate sensitive plastic materials. Q. Appl. Math. 20, 321–332 (1963)

    Article  MathSciNet  Google Scholar 

  17. Litoński, J.: Plastic flow of a tube under adiabatic torsion. Biuletyn Polskiej Akademii Nauk/Bull. Pol. Acad. Sci. 25(1), 1–8 (1977)

    Google Scholar 

  18. Zerilli, F.J., Armstrong, R.W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61(5), 1816 (1987)

    Article  ADS  Google Scholar 

  19. Teng, X., Wierzbicki, T.: Evaluation of six fracture models in high velocity perforation. Eng. Fract. Mech. 73, 1653–1678 (2006)

    Article  Google Scholar 

  20. Abed, F.H., Voyiadjis, G.Z.: Thermodynamic consistent formulations of viscoplastic deformations in FCC metals. J. Eng. Mech. 133(1), 76–86 (2007)

    Google Scholar 

  21. Lodygowski, T., Sumelka, W.: Anisotropic damage for extreme dynamics. In: Voyiadjis, G.Z. (ed.) Handbook of Damage Mechanics, pp. 1185–1220. Springer, New York (2014)

    Google Scholar 

  22. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)

    Article  Google Scholar 

  23. Jankowiak, T., Rusinek, A., Kpenyigba, K.M., Pesci, R.: Ballistic behaviour of steel sheet subjected to impact and perforation. Steel Compos. Struct. 16(6), 595–609 (2014)

    Article  Google Scholar 

  24. Borvik, T., Clausen, A.H., Eriksson, M., Berstad, T., Hopperstad, O.S., Langseth, M.: Experimental and numerical study on the perforation of AA6005–T6 panels. Int. J. Impact Eng. 32, 35–64 (2005)

    Article  Google Scholar 

  25. Borvik, T., Clausen, A.H., Hopperstad, O.S., Langseth, M.: Perforation of AA5083–H116 aluminium plates with conical–nose steel projectiles-experimental study. Int. J. Impact Eng. 30, 367–384 (2004)

    Article  Google Scholar 

  26. Gupta, N.K., Iqbal, M.A., Sekhon, G.S.: Experimental and numerical studies on the behaviour of thin aluminum plates subjected to impact by blunt and hemispherical–nosed projectiles. Int. J. Impact Eng. 32, 1921–1944 (2006)

    Article  Google Scholar 

  27. Clausen, A.H., Borvik, T., Hopperstad, O.S., Banallal, A.: Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality. Mater. Sci. Eng. A. 364, 260–272 (2004)

    Article  Google Scholar 

  28. Rusinek, A., Rodrıguez-Martınez, J.A., Zaera, R., Klepaczko, J.R., Arias, A., Sauvelet, C.: Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles. Int. J. Impact Eng. 36(4), 565–587 (2009)

    Article  Google Scholar 

  29. Atkins, A.G., Afzal Khan, M., Liu, J.H.: Necking and radial cracking around perforations in thin sheets at normal incidence. Int. J. Impact Eng. 21, 521–539 (1998)

    Article  Google Scholar 

  30. Kpenyigba, K.M., Jankowiak, T., Rusinek, A., Pesci, R., Wang, B.E.: Effect of projectile nose shape on ballistic resistance of interstitial-free steel sheets. Int. J. Impact Eng. 79, 83–94 (2015)

    Article  Google Scholar 

  31. Klosak, M., Grazka, M., Mocko, W., Kruszka, L.: Perforation analysis of S235 steel sheets up to 573 K using experimental and numerical methods. Arch. Civ. Eng. 67(3), 639–659 (2021)

    Google Scholar 

  32. Wolfe, W.L., Zissis, G.J.: Infrared Handbook. Washington, DC, Department of Navy, Office of Naval Research (1978)

    Google Scholar 

  33. Madding, R.: Thermographic instruments and systems. Department of Engineering and Applied Science, University of Wisconsin, Madison (1979)

    Google Scholar 

  34. Recht, R.F., Ipson, T.W.: Ballistic perforation dynamics. J. Appl. Mech. 30(3), 384–390 (1963)

    Article  ADS  Google Scholar 

  35. Bitay, E., Tóth, L., Kovács, T.A., Nyikes, Z., Gergely, A.L.: Experimental study on the influence of TiN/AlTiN PVD layer on the surface characteristics of hot work tool steel. Appl. Sci. Basel (2076-3417), 11–19 (2021). https://doi.org/10.3390/app11199309

  36. Tóth, L., Kovács, T.A., Nyikes, Z., Ghica, V.-G.: Increasing the H13 tool steel wear resistance by plasma nitriding and multilayer PVD coating. UPB Sci. Bull. B: Chem. Mater. Sci. (1454–2331). 83(2), 273–282 (2021)

    Google Scholar 

  37. Kovács, T.A., Mhatre, U., Nyikes, Z., Bitay, E.: Surface modification innovation for wear resistance increasing. IOP Conf. Ser. Mater. Sci. Eng. (1757-8981 1757-899X). 613, 012039 (2019). https://doi.org/10.1088/1757-899X/613/1/012039

    Article  Google Scholar 

  38. Kovács, T.A., Tóth, L., Nyikes, Z., Ghica, V.-G.: The analysis of microstructural changes depending on the electro-acoustic effect under the ultrasonic welding process of aluminum foils. UPB Sci. Bull. B: Chem. Mater. Sci. (1454-2331). 82(4), 213–222 (2020)

    Google Scholar 

  39. Nyikes, Z., Kovács, T.A., Tokody, D.: In situ testing of rail damages in accordance with Industry 4.0. J. Phys. Conf. Ser. (1742-6588 1742-6596). 1045, 1–6 (2018). https://doi.org/10.1088/1742-6596/1045/1/012032

    Article  Google Scholar 

  40. Balázs, Á., Nyikes, Z., Kovács, T.A.: Building protection with composite materials application. Key Eng. Mater. (1013-9826 1662-9795). 755, 286–291 (2017). https://doi.org/10.4028/www.scientific.net/KEM.755.286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Klosak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klosak, M., Rusinek, A., Jankowiak, T., Bendarma, A. (2022). Material Testing Under Dynamic Loadings – Proper Design of Critical Infrastructure Structural Elements. In: Kovács, T.A., Nyikes, Z., Fürstner, I. (eds) Security-Related Advanced Technologies in Critical Infrastructure Protection. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2174-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-2174-3_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-2173-6

  • Online ISBN: 978-94-024-2174-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics