Skip to main content

Can Pests Develop Resistance to Biocontrol Products?

  • Chapter
  • First Online:
Extended Biocontrol

Abstract

Although many plant pathogens and plant pests are known to develop resistance to plant protection products such as pesticides, their resistance to biocontrol agents is still relatively unexplored. However, cases of resistance (or reduced sensitivity) to biocontrol agents have been observed for insect pests under field crop conditions, with products such as microorganisms, plant or microbial extracts, semiochemicals and beneficial insect parasitoids. The lack of documented cases of resistance of weeds and pathogens (bacteria, fungi, oomycetes, nematodes, viruses) to biocontrol products may be explained by their still limited use in agriculture compared to the use of biocontrol against insects. However, some studies show differences in the susceptibility of various isolates of plant pathogens to biocontrol agents or to compounds that are produced or synthesized as a result of their interaction with the host plant. This chapter highlights current knowledge regarding the erosion of biocontrol of plant pests and its possible consequences on field efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abot, A.R., F. Moscardi, J. Fuxa, D.R. Sosa-Gómez, and A. Richter. 1996. Development of resistance by Anticarsia gemmatalis from Brazil and the United States to a nuclear polyhedrosis virus under laboratory selection pressure. Biological Control 7 (1): 126–130.

    Article  Google Scholar 

  • Ajouz, S., P.C. Nicot, and M. Bardin. 2010. Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathology 59 (3): 556–566.

    Article  CAS  Google Scholar 

  • Ajouz, S., M. Bardin, P.C. Nicot, and M. El Maâtaoui. 2011. Comparison of the development in planta of a pyrrolnitrin-resistant mutant of Botrytis cinerea and its sensitive wild-type parent isolate. European Journal of Plant Pathology 129 (1): 31–42.

    Article  Google Scholar 

  • Asser-Kaiser, S., E. Fritsch, K. Undorf-Spahn, J. Kienzle, K.E. Eberle, N.A. Gund, A. Reineke, C.P.W. Zebitz, D.G. Heckel, J. Huber, and J.A. Jehle. 2007. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science 317 (5846): 1916–1918.

    Article  CAS  PubMed  Google Scholar 

  • Bardin, M., S. Ajouz, M. Comby, M. Lopez-Ferber, B. Graillot, M. Siegwart, and P.C. Nicot. 2015. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Frontiers in Plant Science 6: 566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berling, M., C. Blachere-Lopez, O. Soubabere, X. Lery, A. Bonhomme, B. Sauphanor, and M. Lopez-Ferber. 2009. Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Applied and Environmental Microbiology 75 (4): 925–930.

    Article  CAS  PubMed  Google Scholar 

  • Brent, K.J., and D.W. Hollomon. 1998. Fungicide Resistance: The Assessment of Risk. Bruxelles: Global Crop Protection Federation.

    Google Scholar 

  • Briese, D. 1987. Insect resistance to baculoviruses. In The Biology of Baculoviruses, ed. B.A. Federici and F.A. Granados, 237–263. Boca Raton: CRC Press.

    Google Scholar 

  • Cowen, L.E., J.B. Anderson, and L.M. Kohn. 2002. Evolution of drug resistance in Candida albicans. Annual Review of Microbiology 56: 139–165.

    Article  CAS  PubMed  Google Scholar 

  • Délye, C., M. Jasieniuk, and V. Le Corre. 2013. Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics 29 (11): 649–658.

    Article  PubMed  Google Scholar 

  • Farias, J., R. Horikoshi, A. Santos, and C. Omoto. 2014. Geographical and temporal variability in susceptibility to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil. Journal of Economic Entomology 107 (6): 2182–2189.

    Article  PubMed  Google Scholar 

  • Feng, R., and M.B. Isman. 1995. Selection for resistance to azadirachtin in the green peach aphid, Mysus persicae. Experientia 51 (8): 831–833.

    Article  CAS  Google Scholar 

  • FRAC. 2021. Fungicidce Resistance Action Committee. http://www.frac.info. Date of access 28 June 2021.

  • McDonald, B.A., and C. Linde. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology 40: 349–379.

    Article  CAS  PubMed  Google Scholar 

  • Nicot, P.C., N. Morison, and M. Mermier. 2001. Optical filters against grey mould of greenhouse crops. In Physical Control Methods in Plant Protection, ed. C. Vincent, B. Panneton, and F. Fleurat-Lessard, 134–145. Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Nicot, P.C., B. Blum, J. Köhl, and M. Ruocco. 2011b. Conclusions and perspectives. Potential of biological control based on published research. 1. Protection against plant pathogens of selected crops. In Classical and Augmentative Biological Control Against Diseases and Pests: Critical Status Analysis and Review of Factors Influencing Their Success, ed. P.C. Nicot, 68–70. Zurich: IOBC-WPRS.

    Google Scholar 

  • Nicot, P.C., F. Avril, M. Duffaud, C. Leyronas, C. Troulet, F. Villeneuve, and M. Bardin. 2019. Differential susceptibility to the mycoparasite Paraphaeosphaeria minitans among Sclerotinia sclerotiorum isolates. Tropical Plant Pathology 44 (1): 82–93.

    Article  Google Scholar 

  • REX Consortium. 2013. Heterogeneity of selection and the evolution of resistance. Trends in Ecology & Evolution 28 (2): 110–118.

    Article  Google Scholar 

  • REX Consortium. 2016. Combining selective pressures to enhance the durability of disease resistance genes. Frontiers in Plant Science 7: 1916.

    Google Scholar 

  • Roush, R., and B. Tabashnik, eds. 1990. Pesticide Resistance in Arthropods. New York/London: Chapman and Hall.

    Google Scholar 

  • Sauphanor, B., M. Berling, J.-F. Toubon, M. Reyes, J. Delnatte, and P. Allemoz. 2006. Carpocapse des pommes : cas de résistance au virus de la granulose en vergers biologiques. Phytoma 590: 24–27.

    Google Scholar 

  • Siegwart, M., M. Pierrot, J.-F. Toubon, S. Maugin, and C. Lavigne. 2013. Adaptation to exclusion netting of the codling moth (Cydia pomonella L.) in apple orchards. IOBC-WPRS Bulletin 91: 127–131.

    Google Scholar 

  • Siegwart, M., B. Graillot, C. Blachere-Lopez, S. Besse, M. Bardin, P.C. Nicot, and M. Lopez-Ferber. 2015. Resistance to bio-insecticides or how to enhance their sustainability: A review. Frontiers in Plant Science 6: 381.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sparks, T.C., J.E. Dripps, G.B. Watson, and D. Paroonagian. 2012. Resistance and cross-resistance to the spinosyns – A review and analysis. Pesticide Biochemistry and Physiology 102 (1): 1–10.

    Article  CAS  Google Scholar 

  • Tabashnik, B.E. 1994. Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology 39: 47–79.

    Article  Google Scholar 

  • Tabata, J., H. Noguchi, Y. Kainoh, F. Mochizuki, and H. Sugie. 2007. Sex pheromone production and perception in the mating disruption-resistant strain of the smaller tea leafroller moth, Adoxophyes honmai. Entomologia Experimentalis et Applicata 122 (2): 145–153.

    Article  CAS  Google Scholar 

  • Tomasetto, F., J.M. Tylianakis, M. Reale, S. Wratten, and S.L. Goldson. 2017. Intensified agriculture favors evolved resistance to biological control. Proceedings of the National Academy of Sciences of the United States of America 114 (15): 3885–3890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X.J., L.J. Yang, F.S. Zeng, L.B. Xiang, S.N. Wang, D.Z. Yu, and H. Ni. 2008. Distribution of baseline sensitivities to natural product physcion among isolates of Sphaerotheca fuliginea and Pseudoperonospora cubensis. Plant Disease 92 (10): 1451–1455.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Bardin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bardin, M., Siegwart, M. (2022). Can Pests Develop Resistance to Biocontrol Products?. In: Fauvergue, X., et al. Extended Biocontrol. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2150-7_23

Download citation

Publish with us

Policies and ethics