Skip to main content

Abstract

The paper presents the studies on technology of ~100 μm-emitting (~3 THz) Al0.15Ga0.85As/GaAs QCLs, the optimized scheme of fabrication of such lasers was elaborated. It was a result of the extensive work on decreasing waveguide losses while ensuring the proper performance of the electrical contacts and effective heat removal. The fabrication comprises Au-based claddings and Au-Au-mounting process. The yielded lasers operate up to the maximum temperature Tmax = 140 K, with threshold current density Jth ~ 1 kA/cm2 at 77 K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pereira MF, Zubelli PJ, Winge DJE, Wacker A, Rondrigues SA, Anfertvev V, Vaks V (2017) Theory and measurements of harmonic generation in semiconductor superlattices with applications in the 100 GHz to 1 THz range. Phys Rev B 96:045306

    Article  ADS  Google Scholar 

  2. Pereira MF (2016) The linewidth enhancement factor of intersubband lasers: from a two-level limit to gain without inversion conditions. Appl Phys Lett 109:222102

    Article  ADS  Google Scholar 

  3. Pereira MF (2017) Analytical expressions for numerical characterization of semiconductors per comparison with luminescence. Materials 11:2

    Article  ADS  Google Scholar 

  4. Oriaku CI, Pereira MF (2017) Analytical solutions for semiconductor luminescence including coulomb correlations with applications to dilute bismides. J Opt Soc Am B 34:321

    Article  ADS  Google Scholar 

  5. Apostolakis A, Pereira MF (2019) Controlling the harmonic conversion efficiency in semiconductor superlattices by interface roughness design. AIP Adv 9:015022

    Article  ADS  Google Scholar 

  6. Pereira MF, Anfertev V, Shevchenko Y, Vaks V (2020) Giant controllable gigahertz to terahertz nonlinearities in superlattices. Sci Rep 10:15950

    Article  ADS  Google Scholar 

  7. Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY (1994) Temperature dependence of the performance characteristics and high T 0 operation. Science 264:553

    Article  ADS  Google Scholar 

  8. Page H, Becker C, Robertson A, Glastre G, Ortiz V, Sirtori C (2001) 300 K operation of a GaAs-based quantum-cascade laser at λ ≈ 9 μm. Appl Phys Lett 78:3529

    Article  ADS  Google Scholar 

  9. Razeghi M (2015) Quantum cascade lasers: from tool to product. Opt Express 23(7):8462–8475

    Article  ADS  Google Scholar 

  10. Bai Y, Slivken S, Darvish SR, Razeghi M (2008) Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency. Appl Phys Lett 021103:1–3

    Google Scholar 

  11. Razeghi M, Bandyopadhyay N, Bai Y, Lu Q, Slivken S (2013) Recent advances in mid infrared (3-5μm) Quantum Cascade Lasers. Opt Mater Express 3:1872–1884

    Article  ADS  Google Scholar 

  12. Szerling A, Slivken S, Razeghi M (2017) High peak power 16 μm InP-related quantum cascade laser. Opto-Electron Rev 25:205–208

    Article  ADS  Google Scholar 

  13. Lu QY, Bandyopadhyay N, Slivken S, Bai Y, Razeghi M (2011) Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers. Appl Phys Lett 99(13):131106

    Article  ADS  Google Scholar 

  14. Lu QY, Bandyopadhyay N, Slivken S, Bai Y, Razeghi M (2012) Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation. Appl Phys Lett 101(25):251121

    Article  ADS  Google Scholar 

  15. Lu Q, Razeghi M (2016) Photo-Dermatology 3(3):42

    Google Scholar 

  16. Rochat M, Hofstetter D, Beck M, Faist J (2001) Long-wavelength (λ ≈ 16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett 79(26):4271–4273

    Article  ADS  Google Scholar 

  17. Kosiel K et al (2011) Nato science for peace and security series B: physics and biophysics. Springer, Cham, pp 91–100

    Google Scholar 

  18. Kosterev A, Wysocki G, Bakhirkin Y, So S, Lewicki R, Fraser M, Tittel F, Curl RF (2008) Application of quantum cascade lasers to trace gas analysis. Appl Phys B Lasers Opt 90:165

    Google Scholar 

  19. Kosiel K, et al (2011) 36th International conference on infrared, Millimeter and Terahertz Waves (IRMMW-THz)

    Google Scholar 

  20. Moeskops BWM, Naus H, Cristescu SM, Harren FJM (2006) Appl Phys B Lasers Opt 82:649

    Article  ADS  Google Scholar 

  21. Tihov MI, Van Den Bergh H, Simeonov V, Taslakov M (2003) Chemical sensors based on DFB quantum cascade laser for environmental monitoring. Master’s thesis, Ecole Polytechnique

    Google Scholar 

  22. Sirtori C, Page H, Becker C, Ortiz V (2002) GaAs-AlGaAs quantum cascade lasers: physics, technology, and prospects. IEEE J Quantum Electron 38:547

    Google Scholar 

  23. Sirtori C (2002) GaAs quantum cascade lasers: fundamentals and performance. EDP Sci

    Google Scholar 

  24. Kosiel K et al (2009) Molecular-beam epitaxy growth and characterization of mid-infrared quantum cascade laser structures. Microelectron J 40:565

    Google Scholar 

  25. Kosiel K et al (2009) 77 K operation of AlGaAs/GaAs quantum cascade laser at 9 um. Photonics Lett Poland 1:16

    Google Scholar 

  26. Höfling S, Kallweit R, Seufert J, Koeth J, Reithmaier JP, Forchel A (2005) Reduction of the threshold current density of GaAs/AlGaAs quantum cascade lasers by optimized injector doping and growth conditions. J Cryst Growth 278:775

    Google Scholar 

  27. Höfling S et al (2006) Dependence of saturation effects on electron confinement and injector doping in GaAs/Al0.45Ga0.55As quantum-cascade lasers. Appl Phys Lett 88:251109

    Google Scholar 

  28. Toor F, Sivco DL, Liu HE, Gmachl CF (2008) Effect of waveguide sidewall roughness on the threshold current density and slope efficiency of quantum cascade lasers. Appl Phys Lett 93:031104-1–031104-3

    Google Scholar 

  29. Szerling A, Karbownik P, Kosiel K, Kubacka-Traczyk J, Pruszyńska-Karbownik E, Płuska M, Bugajski M (2009) Mid-infrared GaAs/AlGaAs quantum cascade lasers technology. Acta Phys Pol A 116:S45–S48

    Google Scholar 

  30. Szerling A, Kosiel K, Karbownik P, Wójcik-Jedlińska A, Płuska M (2014) Terahertz and mid infrared radiation. Detection of explosives and CBRN (using terahertz). In: NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 143–151

    Google Scholar 

  31. Huang X, Chiu Y, Charles WO, Gmachl C (2012) Ridge-width dependence of the threshold of long wavelength (λ ≈ 14 μm) quantum cascade lasers with sloped and vertical sidewalls. Opt Express 20(3):2539–2547

    Google Scholar 

  32. Viana CE, da Silva ANR, Morimoto NI, Bonnaud O (2001) Analysis of SiO2 thin films deposited by PECVD using an Oxygen-TEOS-Argon mixture. Braz J Phys 31(2):299–303

    Google Scholar 

  33. Deschmukh SC, Aydil ES (1996) Investigation of low temperature SiO2 plasma enhanced chemical vapor deposition. J Vac Sci Technol B 14:738

    Google Scholar 

  34. Ray SK, Maiti CK, Lahiri SK, Chafrabarti NB (1992) Properties of silicon dioxide films deposited at low temperatures by microwave plasma enhanced decomposition of tetraethylorthosilicate. J Vac Sci Technol B 10:1139

    Google Scholar 

  35. Slivken S, Private communication

    Google Scholar 

  36. Page H, Dhillon S, Calligaro M, Ortiz V, Sirtori C (2003) Optimised device processing for continuous-wave operation in GaAs-based quantum cascade lasers. Electron Lett 39:1053

    Google Scholar 

  37. Page H, Robertson A, Sirtori C, Becker C, Glastre G, Nagle J (2001) Demonstration of (/spl lambda//spl ap/11.5-μm) GaAs-based quantum cascade laser operating on a Peltier cooled element. IEEE Photon Technol Lett 13:556

    Google Scholar 

  38. Page H, Dhillon S, Calligaro M, Becker C, Ortiz V, Sirtori C (2004) Improved CW operation of GaAs-based QC lasers: T/sub max/= 150 K. IEEE J Quantum Electron 40:665

    Google Scholar 

  39. Lin H-C et al (2003) Optimization of AuGe-Ni-Au ohmic contacts for GaAs mosfets. IEEE Trans Electron Devices 50(4):880–885

    Google Scholar 

  40. Murakami M (2002) Development of refractory ohmic contact materials for gallium arsenide compound semiconductors. Sci Technol Adv Mater 3:1–27

    Google Scholar 

  41. Heiblum M, Nathan MI, Chang CA (1982) Characteristics of AuGeNi ohmic contacts to GaAs. Solid State Electron 25(3):185–195

    Google Scholar 

  42. Aina O, Katz W, Baliga BJ, Rose K (1982) Low-temperature sintered AuGe/GaAs ohmic contact. J Appl Phys 53(1):777–780

    Google Scholar 

  43. Shin Y-C, Murakami M, Wilkie EL, Callegari AC (1987) Effects of interfacial microstructure on uniformity and thermal stability of AuNiGe ohmic contact to n-type GaAs. J Appl Phys 62:582–590

    Google Scholar 

  44. Vidimari F (1979) Improved ohmic properties of Au-Ge Contacts to thin n-GaAs layers alloyed with an SiO2 overlayer. Electron Lett 15:674–675

    Google Scholar 

  45. Faist J (2002) et. Al. Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation. IEEE J Quantum Electron 38(6):533–546

    Google Scholar 

  46. Gmachl C et al (2002) Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers. IEEE J Quantum Electron 38(6):569–581

    Google Scholar 

  47. Hofstetter D, Faist J, Beck M, Müller A, Oesterle U (1999) Demonstration of high-performance 10.16 μm quantum cascade distributed feedback lasers fabricated without epitaxial regrowth. Appl Phys Lett 75(5):665–667

    Google Scholar 

  48. Fuchs P, Friedl J, Höfling S, Koeth J, Forchel A, Worschech L, Kamp M (2012) Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector. Opt Express 20(4):3890–3897

    Google Scholar 

  49. Gmachl C et al (2000) Mid-infrared tunable quantum cascade lasers for gas-sensing applications. IEEE Circuits Devices Mag 16:10–18

    Google Scholar 

  50. Colombelli R et al (2001) Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths. Appl Phys Lett 78(18):2620–2622

    Google Scholar 

  51. Szerling A, Kruszka R, Kosiel K, Wzorek M, Gołaszewska K, Trajnerowicz A, Karbownik P, Kuc M, Czyszanowski T, Walczakowski M, Pałka N (2017) Al0.45Ga0.55As/GaAs-based single-mode distributed-feedback quantum-cascade lasers with surface gratings. J Nanophotonics 11(2):026004-1–026004-13

    Google Scholar 

  52. Baranov AN, Bahriz M, Teissier R (2016) Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 μm. Opt Express 24(16):18799–18806

    Google Scholar 

  53. Vitiello MS, Scalari G, Williams B, De Natale P (2015) Quantum cascade lasers: 20 years of challenges. Opt Express 23(4):5167–5182

    Google Scholar 

  54. Szymański M, Szerling A, Kosiel K (2014) Theoretical investigation of metal–metal waveguides for terahertz quantum-cascade lasers. Opt Quant Electron. https://doi.org/10.1007/s11082-014-0007-z

  55. Belkin M (2008) et.al. Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. Opt Express 16:3242–3248

    Google Scholar 

  56. Fathololoumi S et al (2011) On metal contacts of terahertz quantum cascade lasers with a metal–metal waveguide. Semicond Sci Technol 26:1–5

    Google Scholar 

  57. Williams BS, Kumar S, Callebaut H, Hu Q, Reno JL (2003) Terahertz quantum-cascade laser at using metal waveguide for mode confinement. Appl Phys Lett 83(11):2124–2126

    Google Scholar 

  58. Walther C, Scalari G, Faist J, Beere H, Ritchie D (2006) Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement. Appl Phys Lett 89(23):231121–231121

    Google Scholar 

  59. Szerling A, Kosiel K, Szymański M, Wasilewski Z, Gołaszewska K, Łaszcz A, Płuska M, Trajnerowicz A, Sakowicz M, Walczakowski M, Pałka N, Jakieła R, Piotrowska A (2015) Processing of AlGaAs/GaAs quantum-cascade structures for terahertz laser. J Nanophotonics 9(1): 093079-1-17

    Google Scholar 

  60. Szymański M, Szerling A, Kosiel K, Płuska M (2016) A study of different metals employed in metal–metal waveguides for terahertz quantum cascade lasers. J Phys D Appl Phys 49: 275102 (7pp)

    Google Scholar 

  61. Szerling A, Kosiel K, Prokaryn P, Szymański M, Trajnerowicz A, Sakowicz M, Karbownik P, Płuska M, Walczakowski M, Pałka N (2017) THz for CBRN and explosives detection and diagnosis, NATO science for peace and security series B: physics and biophysics. Springer. https://doi.org/10.1007/978-94-024-1093-8_17

  62. Piotrowska A, Kontakty omowe na bazie złota do związków półprzewodnikowych III-V, rozprawa habilitacyjna

    Google Scholar 

  63. Piotrowska A, et al (1993) In MRS Proceedings, vol. 300. Cambridge University Press, p 219

    Google Scholar 

  64. Barańska A, Szerling A, Karbownik P, Hejduk K, Bugajski M, Łaszcz A, Gołaszewska-Malec K, Filipowski W (2013) Ohmic contacts for room-temperature AlGaAs/GaAs quantum cascade lasers (QCL). Opt Appl XLIII(1):5–15

    Google Scholar 

  65. Szerling A, et al A study of wafer bonding technology for terahertz quantum cascade lasers. Article in preparation

    Google Scholar 

  66. Szerling A et al (2017) Technologia wytwarzania terahercowych laserów kaskadowych. Przegląd Elektrotechniczny 8:50–53

    Google Scholar 

  67. Szerling A, Kosiel K, Kozubal M, Myśliwiec M, Jakieła R, Kuc M, Czyszanowski T, Kruszka R, Pągowska K, Karbownik P, Barcz A, Kamińska E, Piotrowska A (2016) Semicond Sci Technol. 31(7): 075010 (11pp.)

    Google Scholar 

Download references

Acknowledgments

This research was supported by The National Centre for Research and Development (bilateral cooperation, project no. 1/POLTUR-1/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Szerling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szerling, A. et al. (2021). Crucial Aspects of the Device Processing of Quantum Cascade Lasers. In: Pereira, M.F., Apostolakis, A. (eds) Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2082-1_4

Download citation

Publish with us

Policies and ethics