Skip to main content

Abstract

The need for rapid and accurate measurement of trace concentrations of compounds present in ambient humid air has led to construction of specialised mass spectrometers based on the Selected Ion Flow Tube Mass Spectrometry, SIFT-MS, its drift-tube variant, SIFDT-MS, and Proton Transfer Mass Spectrometry, PTR-MS. It is currently possible to analyse vapours of volatile organic compounds, VOC, and other gases including ammonia, hydrogen sulphide and hydrogen cyanide present in concentrations even below a part per billion by volume, ppbv. The reagent ions are formed in electrical discharges and their ion-molecule reactions with sampled analyte molecules take place at pressures of 1–2 mbar. As an example of analytical use, SIFT-MS coupled with the Laser Induced Breakdown, LIB, technique was used to analyse stable gaseous products from the decomposition of pure explosive compounds HMX, RDX, PETN and TNT and from 38 types of commercial explosive and propellant mixtures. Decomposition products analysed included NH3, HCN, HCHO, NO, NO2, HONO, HNO3, C2H5OH, CH3CN, DMNB, C2H6CO, C2H2 and nitroglycerine. For four selected explosives, it was found that the end products of the microscopic LIB laboratory tests correspond well to the composition of fumes from realistic explosions of 0.5 kg charges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pu F et al (2019) Direct sampling mass spectrometry for clinical analysis. Analyst 144:1034–1051

    Article  ADS  Google Scholar 

  2. Covington JA et al (2015) The application of FAIMS gas analysis in medical diagnostics. Analyst 14:6775–6781

    Article  ADS  Google Scholar 

  3. Baumbach JI (2009) Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. J Breath Res 3:034001

    Article  Google Scholar 

  4. Davies SJ et al (2014) Breath analysis of ammonia, volatile organic compounds and deuterated water vapor in chronic kidney disease and during dialysis. Bioanalysis 6:843–857

    Article  Google Scholar 

  5. Španěl P, Smith D (2011) Volatile compounds in health and disease. Curr Opin Clin Nutr Metab Care 14:455–460

    Article  Google Scholar 

  6. Finamore P et al (2019) Breath analysis in respiratory diseases: state-of-the-art and future perspectives. Expert Rev Mol Diagn 19:47–61

    Article  Google Scholar 

  7. Garcia-Gomez D et al (2016) Secondary electrospray ionization coupled to high-resolution mass spectrometry reveals tryptophan pathway metabolites in exhaled human breath. Chem Commun 52:8526–8528

    Article  Google Scholar 

  8. Ke MF et al (2019) Generating supercharged protein ions for breath analysis by extractive electrospray ionization mass spectrometry. Anal Chem 91:3215–3220

    Article  Google Scholar 

  9. Anttalainen O et al (2018) Differential mobility spectrometers with tuneable separation voltage - theoretical models and experimental findings. Trac-Trends Anal Chem 105:413–423

    Article  Google Scholar 

  10. Matyáš R, Pachman J (2013) Primary explosives. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  11. Politzer P, Murray JS (2003) Energetic materials. Part 2. Detonation, combustion. Elsevier Science, Amsterdam

    Google Scholar 

  12. Civiš M et al (2011) Laser ablation of FOX-7: proposed mechanism of decomposition. Anal Chem 83:1069–1077

    Article  Google Scholar 

  13. Cremers DA, Radziemski LJ (2013) Handbook of laser-induced breakdown spectroscopy, 2nd edn. Blackwell Science Publishing, Oxford

    Book  Google Scholar 

  14. Sovová K et al (2010) A study of the composition of the products of laser-induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV-Vis spectrometry. Analyst:1106–1114

    Google Scholar 

  15. Civis S et al (2016) Selected ion flow tube mass spectrometry analyses of laser decomposition products of a range of explosives and ballistic propellants. Anal Methods 8:1145–1150

    Article  Google Scholar 

  16. Lehký L, Kyncl M (2008) Projekt report. FT-TA4/124: research of new methods of detection of explosives

    Google Scholar 

  17. Španěl P, Smith D (1996) Selected ion flow tube: a technique for quantitative trace gas analysis of air and breath. Med Biol Eng Comput 34:409–419

    Article  Google Scholar 

  18. Španěl P et al (2006) A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data. Int J Mass Spectrom 249:230–239

    Article  Google Scholar 

  19. Smith D, Španěl P (2005) Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom Rev 24:661–700

    Article  ADS  Google Scholar 

  20. Smith D et al (2009) Ionic diffusion and mass discrimination effects in the new generation of short flow tube SIFT-MS instruments. Int J Mass Spectrom 281:15–23

    Article  Google Scholar 

  21. Dryahina K, Španěl P (2005) A convenient method for calculation of ionic diffusion coefficients for accurate selected ion flow tube mass spectrometry, SIFT-MS. Int J Mass Spectrom 244:148–154

    Article  Google Scholar 

  22. Španěl P, Smith D (2001) Quantitative selected ion flow tube mass spectrometry: the influence of ionic diffusion and mass discrimination. J Am Soc Mass Spectrom 12:863–872

    Article  Google Scholar 

  23. Dryahina K et al (2018) Quantification of volatile compounds released by roasted coffee by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 32:739–750

    Article  ADS  Google Scholar 

  24. Španěl P et al (1997) Validation of the SIFT technique for trace gas analysis of breath using the syringe injection technique. Ann Occup Hyg 41:373–382

    Article  Google Scholar 

  25. Španěl P, Smith D (2001) On-line measurement of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 15:563–569

    Article  ADS  Google Scholar 

  26. Lindinger W et al (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion Process 173:191–241

    Article  ADS  Google Scholar 

  27. Blake RS et al (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109:861–896

    Article  Google Scholar 

  28. J d G, Warneke C (2007) Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26:223–257

    Article  ADS  Google Scholar 

  29. Jordan A et al (2009) An online ultra-high sensitivity proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+ SRI- MS). Int J Mass Spectrom 286:32–38

    Article  Google Scholar 

  30. Lindinger W, Jordan A (1998) Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27:347–375

    Article  Google Scholar 

  31. Karl T et al (2001) Human breath isoprene and its relation to blood cholesterol levels: new measurements and modeling. J Appl Physiol 91:762

    Article  Google Scholar 

  32. De Gouw J et al (2003) Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. J Geophys Res-Atmos 108(4682)

    Google Scholar 

  33. Hewitt C et al (2003) The application of proton transfer reaction-mass spectrometry (PTR-MS) to the monitoring and analysis of volatile organic compounds in the atmosphere. J Environ Monit 5:1–7

    Article  Google Scholar 

  34. Taipale R et al (2008) Technical note: quantitative long-term measurements of VOC concentrations by PTR-MS-measurement, calibration, and volume mixing ratio calculation methods. Atmos. Chem Phys 8:6681–6698

    ADS  Google Scholar 

  35. Schripp T et al (2010) Interferences in the determination of formaldehyde via PTR-MS: what do we learn from m/z 31? Int J Mass Spectrom 289:170–172

    Article  Google Scholar 

  36. Schoon N et al (2007) A selected ion flow tube study of the reactions of H3O+, NO+ and O2+ with a series of C5, C6 and C8 unsaturated biogenic alcohols. Int J Mass Spectrom 263:127–136

    Article  Google Scholar 

  37. Španěl P et al (2004) Quantification of hydrogen cyanide in humid air by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 18:1869–1873

    Article  ADS  Google Scholar 

  38. Dhooghe F et al (2009) Flowing afterglow selected ion flow tube (FA-SIFT) study of ion/molecule reactions in support of the detection of biogenic alcohols by medium-pressure chemical ionization mass spectrometry techniques. Int J Mass Spectrom 285:31–41

    Article  Google Scholar 

  39. Blake RS et al (2006) Chemical ionization reaction time-of-flight mass spectrometry: multi-reagent analysis for determination of trace gas composition. Int J Mass Spectrom 254:85–93

    Article  Google Scholar 

  40. Wyche K et al (2005) Differentiation of isobaric compounds using chemical ionization reaction mass spectrometry. Rapid Commun Mass Spectrom 19:3356–3362

    Article  ADS  Google Scholar 

  41. Blake R et al (2004) Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds. Anal Chem 76:3841–3845

    Article  Google Scholar 

  42. Spesyvyi A et al (2017) Ion chemistry at elevated ion-molecule interaction energies in a selected ion flow-drift tube: reactions of H3O+, NO+ and O2+ with saturated aliphatic ketones. Phys Chem Chem Phys 19:31714–31723

    Article  Google Scholar 

  43. Spesyvyi A et al (2016) In-tube collision-induced dissociation for selected ion flow-drift tube mass spectrometry, SIFDT-MS: a case study of NO+ reactions with isomeric monoterpenes. Rapid Commun Mass Spectrom 30:2009–2016

    Article  ADS  Google Scholar 

  44. Spesyvyi A et al (2015) Selected ion flow-drift tube mass spectrometry: quantification of volatile compounds in air and breath. Anal Chem 87:12151–12160

    Article  Google Scholar 

  45. Oriaku CI, Pereira MF (2017) Analytical solutions for semiconductor luminescence including coulomb correlations with applications to dilute bismides. J Opt Soc Am B 34:321–328

    Article  ADS  Google Scholar 

  46. Pereira MF (2017) Analytical expressions for numerical characterization of semiconductors per comparison with luminescence. Materials (Basel) 11:2

    Article  ADS  Google Scholar 

  47. Pereira MF (2016) The linewidth enhancement factor of intersubband lasers: from a two-level limit to gain without inversion conditions. Appl Phys Lett 109:222102

    Article  ADS  Google Scholar 

  48. Pereira MF et al (2017) Terahertz generation by gigahertz multiplication in superlattices. J Nanophoton 11(046022)

    Google Scholar 

  49. Apostolakis A, Pereira MF (2019) Controlling the harmonic conversion efficiency in semiconductor superlattices by interface roughness design. AIP Adv 9:015022

    Article  ADS  Google Scholar 

  50. Apostolakis A, Pereira M (2019) Potential and limits of superlattice multipliers coupled to different input power sources. J Nanophoton 13:036017

    Article  Google Scholar 

  51. Apostolakis A, Pereira MF (2020) Superlattice nonlinearities for gigahertz-terahertz generation in harmonic multipliers. Nano 9(12):3941–3952. https://doi.org/10.1515/nanoph-2020-0155

    Article  Google Scholar 

  52. Pereira MF, Anfertev V, Shevchenko Y, Vaks V (2020) Giant controllable gigahertz to terahertz nonlinearities in superlattices. Sci Rep 10:15950

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kseniya Dryahina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dryahina, K., Spanel, P. (2021). Soft Chemical Ionization Mass Spectrometric Analyses of Hazardous Gases and Decomposition Products of Explosives in Air. In: Pereira, M.F., Apostolakis, A. (eds) Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2082-1_14

Download citation

Publish with us

Policies and ethics