Skip to main content

Sympatric and Allopatric Diversification in the Adaptive Radiations of Midas Cichlids in Nicaraguan Lakes

Part of the Fish & Fisheries Series book series (FIFI,volume 40)

Abstract

The Nicaraguan Midas cichlid species complex is a natural experiment where fish from a large source population from turbid and shallow great lakes very recently (<20,000 years ago) colonized eight small crater lakes. The colonizers experienced completely novel environments in the clear and deep calderas. So far, 13 Midas cichlid species have been described, but more genetic clusters were identified. Although some of these species arose in allopatry, many more evolved in the absence of barriers to gene flow within two crater lakes. They contain small radiations of four and six endemics, respectively. These radiations constitute one of the few generally accepted empirical examples for sympatric speciation making them an ideal system for studying repeated evolution of adaptations and speciation at different levels of biological organization, including the genome level. Diversification occurred repeatedly in parallel including body morphology, coloration, color perception, and trophic structures such as pharyngeal jaws and hypertrophied lips. Additionally, parallel speciation happened in the two small crater lake radiations, where ecomorphologically similar species evolved repeatedly. Genomic differentiation associated with oligogenic traits (e.g., hypertrophic lips and coloration) is shallow, remaining polymorphisms, but much higher for polygenic traits (e.g., body shape and pharyngeal jaw morphology) that distinguish new species.

Keywords

  • Amphilophus citrinellus
  • Speciation
  • Parallel evolution
  • Genetic polymorphism
  • Sympatric speciation
  • Natural experiment

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-024-2080-7_6
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-94-024-2080-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abate ME, Eng AG, Kaufman L (2010) Alarm cue induces an antipredator morphological defense in juvenile Nicaragua cichlids Hypsophrys nicaraguensis. Curr Zool 56:36–42

    CrossRef  Google Scholar 

  • Agassiz L (1859) An introduction to the description of some new fishes from Lake Nicaragua. Proc Boston Soc Nat Hist VI:407–409

    Google Scholar 

  • Annett C (1989) Differential predation on colour morphs of the Midas cichlid, Cichlasoma citrinellum. Anim Behav 37:935–942

    CrossRef  Google Scholar 

  • Astorqui I (1971) Peces de la cuenca de los grandes lagos de Nicaragua. Rev Biol Trop 19:7–57

    Google Scholar 

  • Bagley JC, Alda F, Breitman MF, Bermingham E, van den Berghe EP, Johnson JB (2015) Assessing species boundaries using multilocus species delimitation in a morphologically conserved group of neotropical freshwater fishes, the Poecilia sphenops species complex (Poeciliidae). PLoS One 10:e0121139

    Google Scholar 

  • Barlow GW (1976) The Midas cichlid in Nicaragua. In: Thorson TB (ed) Investigations of the ichthyofauna of Nicaraguan lakes. University of Nebraska-Lincoln, Lincoln, pp 333–358

    Google Scholar 

  • Barlow GW (1983) The benefits of being gold: behavioral consequences of polychromatism in the Midas cichlid, Cichlasoma citrinellum. Env Biol Fish 8:235–247

    CrossRef  Google Scholar 

  • Barlow GW, Ballin PJ (1976) Predicting and assessing dominance from size and coloration in the polychromatic Midas cichlid. Anim Behav 24:793–813

    CrossRef  Google Scholar 

  • Barlow GW, Munsey JW (1976) The red devil-Midas-arrow cichlid species complex in Nicaragua. In: Thorson TB (ed) Investigations of the ichthyofauna of Nicaraguan lakes. University of Nebraska-Lincoln, Lincoln, pp 359–369

    Google Scholar 

  • Barlow GW, Wallach SJ (1976) Colour and levels of aggression in the Midas cichlid. Anim Behav 24:814–817

    CrossRef  Google Scholar 

  • Barlow GW, Baylis JR, Roberts D (1976) Chemical analyses of some crater lakes in relation to adjacent Lake Nicaragua. In: Thorson TB (ed) Investigations of the ichthyofauna of Nicaraguan lakes. University of Nebraska-Lincoln, Lincoln, pp 17–20

    Google Scholar 

  • Barluenga M, Meyer A (2004) The Midas cichlid species complex: incipient sympatric speciation in Nicaraguan cichlid fishes? Mol Ecol 13:2061–2076

    CAS  PubMed  CrossRef  Google Scholar 

  • Barluenga M, Meyer A (2010) Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes. BMC Evol Biol 10:326

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A (2006) Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439:719

    CAS  PubMed  CrossRef  Google Scholar 

  • Baumgarten L, Machado-Schiaffino G, Henning F, Meyer A (2015) What big lips are good for: on the adaptive function of repeatedly evolved hypertrophied lips of cichlid fishes. Biol J Linn Soc 115:448–455

    CrossRef  Google Scholar 

  • Bird CE, Fernandez-Silva I, Skillings DJ, Toonen RJ (2012) Sympatric speciation in the most “modern synthesis” era of evolutionary biology. Evol Biol 39:158–180

    CrossRef  Google Scholar 

  • Bolnick DI (2006) Multi-species outcomes in a common model of sympatric speciation. J Theor Biol 241:734–744

    PubMed  CrossRef  Google Scholar 

  • Bolnick DI, Fitzpatrick BM (2007) Sympatric speciation: models and empirical evidence. Annu Rev Ecol Evol Syst 38:459–487

    CrossRef  Google Scholar 

  • Bowmaker JK (2008) Evolution of vertebrate visual pigments. Vis Res 48:2022–2041

    CAS  PubMed  CrossRef  Google Scholar 

  • Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, Di Palma F (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375–381

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bunje PM, Barluenga M, Meyer A (2007) Sampling genetic diversity in the sympatrically and allopatrically speciating Midas cichlid species complex over a 16 year time series. BMC Evol Biol 7:25

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Burress ED (2014) Cichlid fishes as models of ecological diversification: patterns, mechanisms, and consequences. Hydrobiologia 748:7–27

    CrossRef  Google Scholar 

  • Carleton KL, Dalton BE, Escobar-Camacho D, Nandamuri SP (2016) Proximate and ultimate causes of variable visual sensitivities: insights from cichlid fish radiations. Genesis 54:299–325

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cheng CL, Gan KJ, Novales Flamarique I (2009) Thyroid hormone induces a time-dependent opsin switch in the retina of salmonid fishes. Invest Ophthalmol Vis Sci 50:3024–3032

    PubMed  CrossRef  Google Scholar 

  • Colborne S, Garner S, Longstaffe F, Neff BD (2016) Assortative mating but no evidence of genetic divergence in a species characterized by a trophic polymorphism. J Evol Biol 29:633–644

    CAS  PubMed  CrossRef  Google Scholar 

  • Cole GA (1976) Limnology of the great lakes of Nicaragua. In: Thorson TB (ed) Investigations of the ichthyofauna of Nicaraguan lakes. University of Nebraska-Lincoln, Lincoln, pp 9–15

    Google Scholar 

  • Colombo M, Diepeveen ET, Muschick M, Santos ME, Indermaur A, Boileau N, Salzburger W (2013) The ecological and genetic basis of convergent thick-lipped phenotypes in cichlid fishes. Mol Ecol 22:670–684

    CAS  PubMed  CrossRef  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Cronin TW, Johnsen S, Marshall NJ, Warrant EJ (2014) Visual ecology. Princeton University Press, Princeton

    CrossRef  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Murray, London

    Google Scholar 

  • Dickman MC, Schliwa M, Barlow GW (1988) Melanophore death and disappearance produces color metamorphosis in the polychromatic Midas cichlid (Cichlasoma citrinellum). Cell Tissue Res 253:9–14

    CAS  PubMed  CrossRef  Google Scholar 

  • Dittmann MT, Roesti M, Indermaur A, Colombo M, Gschwind M, Keller I, Salzburger W (2012) Depth-dependent abundance of Midas cichlid fish (Amphilophus spp.) in two Nicaraguan crater lakes. Hydrobiologia 686:277–285

    CrossRef  Google Scholar 

  • Elmer KR, Meyer A (2011) Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol Evol 26:298–306

    PubMed  CrossRef  Google Scholar 

  • Elmer KR, Lehtonen TK, Meyer A (2009) Color assortative mating contributes to sympatric divergence of neotropical cichlid fish. Evolution 63:2750–2757

    PubMed  CrossRef  Google Scholar 

  • Elmer KR, Kusche H, Lehtonen TK, Meyer A (2010a) Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philos Trans R Soc Lond Ser B Biol Sci 365:1763–1782

    CrossRef  Google Scholar 

  • Elmer KR, Lehtonen TK, Kautt AF, Harrod C, Meyer A (2010b) Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biol 8:60

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Elmer KR, Lehtonen TK, Fan S, Meyer A (2013) Crater lake colonization by neotropical cichlid fishes. Evolution 67:281–288

    PubMed  CrossRef  Google Scholar 

  • Elmer KR, Fan S, Kusche H, Spreitzer ML, Kautt AF, Franchini P, Meyer A (2014) Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat Commun 5:5168

    CAS  PubMed  CrossRef  Google Scholar 

  • ERM (2015) Environmental and social impact assessment (ESIA), vol 8. Environmental Resources Management Group, London

    Google Scholar 

  • Escobar-Camacho D, Ramos E, Martins C, Carleton KL (2017) The opsin genes of Amazonian cichlids. Mol Ecol 26:1343–1356

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fain GL, Hardie R, Laughlin SB (2010) Phototransduction and the evolution of photoreceptors. Curr Biol 20:R114–R124

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Foote AD (2018) Sympatric speciation in the genomic era. Trends Ecol Evol 33:85–95

    PubMed  CrossRef  Google Scholar 

  • Franchini P, Fruciano C, Frickey T, Jones JC, Meyer A (2014a) The gut microbial community of Midas cichlid fish in repeatedly evolved limnetic-benthic species pairs. PLoS One 9:e95027

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Franchini P, Fruciano C, Spreitzer ML, Jones JC, Elmer KR, Henning F, Meyer A (2014b) Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Mol Ecol 23:1828–1845

    PubMed  CrossRef  Google Scholar 

  • Franchini P, Xiong P, Fruciano C, Meyer A (2016) The role of microRNAs in the repeated parallel diversification of lineages of Midas cichlid fish from Nicaragua. Genome Biol Evol 8:1543–1555

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Franchini P, Monne Parera D, Kautt AF, Meyer A (2017) quaddRAD: a new high-multiplexing and PCR duplicate removal ddRAD protocol produces novel evolutionary insights in a nonradiating cichlid lineage. Mol Ecol 26:2783–2795

    CAS  PubMed  CrossRef  Google Scholar 

  • Franssen NR, Stewart LK, Schaefer JF (2013) Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats. Ecol Evol 3:4648–4657

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fruciano C, Franchini P, Kovacova V, Elmer KR, Henning F, Meyer A (2016a) Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish. Nat Commun 7:12736

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fruciano C, Franchini P, Raffini F, Fan S, Meyer A (2016b) Are sympatrically speciating Midas cichlid fish special? Patterns of morphological and genetic variation in the closely related species Archocentrus centrarchus. Ecol Evol 6:4102–4114

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23

    CrossRef  Google Scholar 

  • Futuyma DJ, Mayer GC (1980) Non-allopatric speciation in animals. Syst Biol 29:254–271

    CrossRef  Google Scholar 

  • Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton

    Google Scholar 

  • Gavrilets S (2005) “Adaptive speciation”—it is not that easy: reply to Doebeli et al. Evolution 59:696–699

    Google Scholar 

  • Gavrilets S, Vose A, Barluenga M, Salzburger W, Meyer A (2007) Case studies and mathematical models of ecological speciation. 1. Cichlids in a crater lake. Mol Ecol 16:2893–2909

    PubMed  CrossRef  Google Scholar 

  • Geiger MF, McCrary JK, Schliewen UK (2010a) Not a simple case – a first comprehensive phylogenetic hypothesis for the Midas cichlid complex in Nicaragua (Teleostei: Cichlidae: Amphilophus). Mol Phylogenet Evol 56:1011–1024

    CAS  PubMed  CrossRef  Google Scholar 

  • Geiger MF, McCrary JK, Stauffer JR (2010b) Description of two new species of the Midas cichlid complex (Teleostei: Cichlidae) from Lake Apoyo, Nicaragua. Proc Biol Soc Wash 123:159–173

    CrossRef  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    CrossRef  Google Scholar 

  • Gill TN, Bransford JF (1877) Synopsis of the fishes of Lake Nicaragua. Proc Acad Nat Sci Phila 29:175–191

    Google Scholar 

  • Gow J, Rogers S, Jackson M, Schluter D (2008) Ecological predictions lead to the discovery of a benthic–limnetic sympatric species pair of threespine stickleback in Little Quarry Lake, British Columbia. Can J Zool 86:564–571

    CrossRef  Google Scholar 

  • Günther ACLG (1864a) On some new species of central American fishes. Proc Zool Soc London

    Google Scholar 

  • Günther ACLG (1864b) Report of a collection of fishes made by Messrs. Dow, Godman and Salvin in Guatemala. Part first. Proc Zool Soc London

    Google Scholar 

  • Günther ACLG (1867) On the fishes of the states of Central America, founded upon specimens collected in fresh and marine waters of various parts of that country by Messrs. Salvin and Godman and Capt. J. M. Dow. Proc Zool Soc London 1866:600–604

    Google Scholar 

  • Härer A, Torres-Dowdall J, Meyer A (2017a) The imperiled fish fauna in the Nicaragua Canal zone. Conserv Biol 31:86–95

    PubMed  CrossRef  Google Scholar 

  • Härer A, Torres-Dowdall J, Meyer A (2017b) Rapid adaptation to a novel light environment: the importance of ontogeny and phenotypic plasticity in shaping the visual system of Nicaraguan Midas cichlid fish (Amphilophus citrinellus spp.). Mol Ecol 26:5582–5593

    PubMed  CrossRef  CAS  Google Scholar 

  • Härer A, Meyer A, Torres-Dowdall J (2018) Convergent phenotypic evolution of the visual system via different molecular routes: how Neotropical cichlid fishes adapt to novel light environments. Evol Lett 2:341–354

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Härer A, Torres-Dowdall J, Rometsch SJ, Yohannes E, Machado-Schiaffino G, Meyer A (2020) Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. Microbiome 8:149

    Google Scholar 

  • Hárosi FI (1994) An analysis of two spectral properties of vertebrate visual pigments. Vis Res 34:1359–1367

    PubMed  CrossRef  Google Scholar 

  • Hendry AP (2016) Eco-evolutionary dynamics. Princeton University Press, Princeton

    CrossRef  Google Scholar 

  • Henning F, Meyer A (2014) The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annu Rev Genomics Hum Genet 15:417–441

    CAS  PubMed  CrossRef  Google Scholar 

  • Henning F, Renz AJ, Fukamachi S, Meyer A (2010) Genetic, comparative genomic, and expression analyses of the Mc1r locus in the polychromatic Midas cichlid fish (Teleostei, Cichlidae Amphilophus sp.) species group. J Mol Evol 70:405–412

    CAS  PubMed  CrossRef  Google Scholar 

  • Henning F, Jones JC, Franchini P, Meyer A (2013) Transcriptomics of morphological color change in polychromatic Midas cichlids. BMC Genomics 14:171

    Google Scholar 

  • Henning F, Machado-Schiaffino G, Baumgarten L, Meyer A (2017) Genetic dissection of adaptive form and function in rapidly speciating cichlid fishes. Evolution 71:1297–1312

    CAS  PubMed  CrossRef  Google Scholar 

  • Huete-Perez JA, Meyer A, Alvarez PJJ (2015) Rethink the Nicaragua Canal. Science 347:355

    CAS  PubMed  CrossRef  Google Scholar 

  • Huete-Perez JA, Ortega-Hegg M, Urquhart GR, Covich AP, Vammen K, Rittmann BE, Alvarez PJJ (2016) Critical uncertainties and gaps in the environmental- and social-impact assessment of the proposed Interoceanic Canal through Nicaragua. Bioscience 66:632–645

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hulsey CD (2006) Function of a key morphological innovation: fusion of the cichlid pharyngeal jaw. Proc R Soc B 273:669–675

    CrossRef  Google Scholar 

  • Hulsey CD, Hendrickson DA, García de León FJ (2005) Trophic morphology, feeding performance and prey use in the polymorphic fish Herichthys minckleyi. Evol Ecol Res 7:303–324

    Google Scholar 

  • Hulsey CD, García de León FJ, Rodiles-Hernández R (2006) Micro- and macroevolutionary decoupling of cichlid jaws: a test of Liem’s key innovation hypothesis. Evolution 60:2096–2109

    CAS  PubMed  CrossRef  Google Scholar 

  • Hulsey CD, Machado-Schiaffino G, Keicher L, Ellis-Soto D, Henning F, Meyer A (2017) The integrated genomic architecture and evolution of dental divergence in east African cichlid fishes (Haplochromis chilotes x H. nyererei). G3 7:3195–3202

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Incer J (1976) Geography of Lake Nicaragua. In: Thorson TB (ed) Investigations of the ichthyofauna of Nicaraguan lakes. University of Nebraska-Lincoln, Lincoln, pp 3–7

    Google Scholar 

  • Karagic N, Härer A, Meyer A, Torres-Dowdall J (2018) Heterochronic opsin expression due to early light deprivation results in drastically shifted visual sensitivity in a cichlid fish: possible role of thyroid hormone signaling. J Exp Zool Part B 330:202–214

    Google Scholar 

  • Kautt AF, Elmer KR, Meyer A (2012) Genomic signatures of divergent selection and speciation patterns in a ‘natural experiment’, the young parallel radiations of Nicaraguan crater lake cichlid fishes. Mol Ecol 21:4770–4786

    PubMed  CrossRef  Google Scholar 

  • Kautt AF, Machado-Schiaffino G, Meyer A (2016a) Multispecies outcomes of sympatric speciation after admixture with the source population in two radiations of Nicaraguan crater lake cichlids. PLoS Genet 12:e1006157

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kautt AF, Machado-Schiaffino G, Torres-Dowdall J, Meyer A (2016b) Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecol Evol 6:5342–5357

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kautt AF, Machado-Schiaffino G, Meyer A (2018) Lessons from a natural experiment: allopatric morphological divergence and sympatric diversification in the Midas cichlid species complex are largely influenced by ecology in a deterministic way. Evol Lett 2:323–340

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kautt AF, Kratochwil CF, Nater A, Machado-Schiaffino G, Olave M, Henning F, Torres-Dowdall J, Härer A, Hulsey CD, Franchini P, Pippel M, Myers EW, Meyer A (2020) Contrasting signatures of genomic divergence during sympatric speciation. Nature 588:106–111

    Google Scholar 

  • Klingenberg CP, Barluenga M, Meyer A (2003) Body shape variation in cichlid fishes of the Amphilophus citrinellus species complex. Biol J Linn Soc 80:397–408

    CrossRef  Google Scholar 

  • Kocher TD, Conroy JA, McKaye KR, Stauffer JR (1993) Similar morphologies of cichlid fish in lakes Tanganyika and Malawi are due to convergence. Mol Phylogenet Evol 2:158–165

    CAS  PubMed  CrossRef  Google Scholar 

  • Kolbe JJ, Leal M, Schoener TW, Spiller DA, Losos JB (2012) Founder effects persist despite adaptive differentiation: a field experiment with lizards. Science 335:1086–1089

    CAS  PubMed  CrossRef  Google Scholar 

  • Kopp M, Hermisson J (2007) Adaptation of a quantitative trait to a moving optimum. Genetics 176:715–719

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kusche H, Meyer A (2014) One cost of being gold: selective predation and implications for the maintenance of the Midas cichlid colour polymorphism (Perciformes: Cichlidae). Biol J Linn Soc 111:350–358

    CrossRef  Google Scholar 

  • Kusche H, Recknagel H, Elmer KR, Meyer A (2014) Crater lake cichlids individually specialize along the benthic-limnetic axis. Ecol Evol 4:1127–1139

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kusche H, Elmer KR, Meyer A (2015) Sympatric ecological divergence associated with a color polymorphism. BMC Biol 13:82

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kutterolf S, Freundt A, Pérez W, Wehrmann H, Schmincke HU (2007) Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua. J Volcanol Geotherm Res 163:55–82

    CAS  CrossRef  Google Scholar 

  • Landry L, Bernatchez L (2010) Role of epibenthic resource opportunities in the parallel evolution of lake whitefish species pairs (Coregonus sp.). J Evol Biol 23:2602–2613

    CAS  PubMed  CrossRef  Google Scholar 

  • Landry L, Vincent W, Bernatchez L (2007) Parallel evolution of lake whitefish dwarf ecotypes in association with limnological features of their adaptive landscape. J Evol Biol 20:971–984

    CAS  PubMed  CrossRef  Google Scholar 

  • Langerhans RB (2008) Predictability of phenotypic differentiation across flow regimes in fishes. Integr Comp Biol 48:750–768

    PubMed  CrossRef  Google Scholar 

  • Langerhans RB, Reznick DN (2010) Ecology and evolution of swimming performance in fishes: predicting evolution with biomechanics. In: Domenici P, Kapoor BG (eds) Fish locomotion: an eco-ethological perspective. CRC Press, Boca Raton, pp 200–248

    CrossRef  Google Scholar 

  • Lehtonen TK (2014) Colour biases in territorial aggression in a Neotropical cichlid fish. Oecologia 175:85–93

    PubMed  CrossRef  Google Scholar 

  • Levis NA, Pfennig DW (2016) Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. Trends Ecol Evol 31:563–574

    PubMed  CrossRef  Google Scholar 

  • Liem KF (1973) Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst Zool 22:425–441

    CrossRef  Google Scholar 

  • Machado-Schiaffino G, Henning F, Meyer A (2014) Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas cichlid fishes. Evolution 68:2086–2091

    PubMed  CrossRef  Google Scholar 

  • Machado-Schiaffino G, Kautt AF, Kusche H, Meyer A (2015) Parallel evolution in Ugandan crater lakes: repeated evolution of limnetic body shapes in haplochromine cichlid fish. BMC Evol Biol 15:9

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Machado-Schiaffino G, Kautt AF, Torres-Dowdall J, Baumgarten L, Henning F, Meyer A (2017) Incipient speciation driven by hypertrophied lips in Midas cichlid fishes? Mol Ecol 26:2348–2362

    CAS  PubMed  CrossRef  Google Scholar 

  • Mallet J (2004) Perspectives Poulton, Wallace and Jordan: how discoveries in Papilio butterflies led to a new species concept 100 years ago. Syst Biodivers 1:441–452

    CrossRef  Google Scholar 

  • Manousaki T, Hull PM, Kusche H, Machado-Schiaffino G, Franchini P, Harrod C, Meyer A (2013) Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Mol Ecol 22:650–669

    CAS  PubMed  CrossRef  Google Scholar 

  • Martin CH, Cutler JS, Friel JP, Dening Touokong C, Coop G, Wainwright PC (2015) Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation. Evolution 69:1406–1422

    PubMed  CrossRef  Google Scholar 

  • Matessi C, Gimelfarb A, Gavrilets S (2001) Long-term buildup of reproductive isolation promoted by disruptive selection: how far does it go? Selection 2:41–64

    CrossRef  Google Scholar 

  • Maynard Smith J (1966) Sympatric speciation. Am Nat 100:637–650

    CrossRef  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap, Cambridge, MA

    CrossRef  Google Scholar 

  • Mayr E (2001) What evolution is. Basic Books, New York

    Google Scholar 

  • McKaye KR (1980) Seasonality in habitat selection by the gold color morph of Cichlasoma citrinellum and its relevance to sympatric speciation in the family Cichlidae. Environ Biol Fish 5:75–78

    CrossRef  Google Scholar 

  • McKaye KR, Barlow GW (1976) Competition between color morphs of the Midas cichlid, Cichlasoma citrinellum, in Lake Jiloá, Nicaragua. In: Thorson TB (ed) Investigations of the ichthyofauna of Nicaraguan lakes. University of Nebraska-Lincoln, Lincoln, pp 465–475

    Google Scholar 

  • Meek SE (1907) Synopsis of the fishes of the great lakes of Nicaragua. Field Columbian Museum, Zoological Series, vol 7, no 4. Available via Biodiversity Heritage Library, https://www.biodiversitylibrary.org/bibliography/3761

  • Meyer A (1987) Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41:1357–1369

    PubMed  Google Scholar 

  • Meyer A (1989) Cost of morphological specialization: feeding performance of the two morphs in the trophically polymorphic cichlid fish, Cichlasoma citrinellum. Oecologia 80:431–436

    CAS  PubMed  CrossRef  Google Scholar 

  • Meyer A (1990a) Ecological and evolutionary consequences of the trophic polymorphism in Cichlasoma citrinellum (Pisces: Cichlidae). Biol J Linn Soc 39:279–299

    CrossRef  Google Scholar 

  • Meyer A (1990b) Morphometrics and allometry of the trophically polymorphic cichlid fish, Cichlasoma citrinellum: alternative adaptations and ontogenetic changes in shape. J Zool Lond 221:237–260

    CrossRef  Google Scholar 

  • Meyer A (2011) King Midas and his many extremely young species: studies on speciation in cichlid fishes in Nicaraguan Crater Lakes. In: Losos JB (ed) In the light of evolution: essays from the laboratory and field. W. H. Freeman, Greenwood

    Google Scholar 

  • Meyer A, Huete-Perez JA (2014) Nicaragua Canal could wreak environmental ruin. Nature 506:287–289

    PubMed  CrossRef  Google Scholar 

  • Meyer A, Kautt A (2014) Sympatric speciation. In: Losos J (ed) Oxford bibliographies in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Montenegro Guillén S (1992) Estudio de caso en medio ambiente y salud: La contaminación del Lago Xolotlán Managua, Nicaragua. Ecosal:77–81

    Google Scholar 

  • Muschick M, Barluenga M, Salzburger W, Meyer A (2011) Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evol Biol 11:116

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ng L, Hurley JB, Dierks B, Srinivas M, Saltó C, Vennström B, Forrest D (2001) A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27:94

    CAS  PubMed  CrossRef  Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press, Oxford

    CrossRef  Google Scholar 

  • Novales Flamarique I (2013) Opsin switch reveals function of the ultraviolet cone in fish foraging. Proc R Soc B 280:20122490

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • O’Quin KE, Smith AR, Sharma A, Carleton KL (2011) New evidence for the role of heterochrony in the repeated evolution of cichlid opsin expression. Evol Dev 13:193–203

    PubMed  CrossRef  Google Scholar 

  • Oliver MK, Arnegard ME (2010) A new genus for Melanochromis labrosus, a problematic Lake Malawi cichlid with hypertrophied lips (Teleostei: Cichlidae). Ichthyol Explor Freshwaters 21:209–232

    Google Scholar 

  • Orr HA (2005) The genetic theory of adaptation: a brief history. Nat Rev Genet 6:119

    CAS  PubMed  CrossRef  Google Scholar 

  • Palacios M, Voelker G, Rodriguez LA, Mateos M, Tobler M (2016) Phylogenetic analyses of the subgenus Mollienesia (Poecilia, Poeciliidae, Teleostei) reveal taxonomic inconsistencies, cryptic biodiversity, and spatio-temporal aspects of diversification in Middle America. Mol Phyl Evol 103:230–244

    Google Scholar 

  • Raffini F, Schneider RF, Franchini P, Kautt AF, Meyer A (2020) Diving into divergence: differentiation in swimming performances, physiology and gene expression between locally‐adapted sympatric cichlid fishes. Mol Ecol 29:1219–1234

    Google Scholar 

  • Recknagel H, Kusche H, Elmer KR, Meyer A (2013) Two new endemic species in the Midas cichlid species complex from Nicaraguan crater lakes: Amphilophus tolteca and Amphilophus viridis (Perciformes, Cichlidae). Aqua 19:207–229

    Google Scholar 

  • Recknagel H, Elmer KR, Meyer A (2014) Crater lake habitat predicts morphological diversity in adaptive radiations of cichlid fishes. Evolution 68:2145–2155

    PubMed  CrossRef  Google Scholar 

  • Roberts MR, Srinivas M, Forrest D, de Escobar GM, Reh TA (2006) Making the gradient: thyroid hormone regulates cone opsin expression in the developing mouse retina. PNAS 103:6218–6223

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schlichting C (2004) The role of phenotypic plasticity in diversification. Phenotypic Plasticity 191–200

    Google Scholar 

  • Schliewen U, Kocher T, McKaye K, Seehausen O, Tautz D (2006) Evolutionary biology: evidence for sympatric speciation? Nature 444:E12–E13

    CAS  PubMed  CrossRef  Google Scholar 

  • Schluter D (1993) Adaptive radiation in sticklebacks: size, shape, and habitat use efficiency. Ecology 74:699–709

    CrossRef  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schneider RF, Meyer A (2017) How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Mol Ecol 26:330–350

    PubMed  CrossRef  Google Scholar 

  • Schwander T, Leimar O (2011) Genes as leaders and followers in evolution. Trends Ecol Evol 26:143–151

    PubMed  CrossRef  Google Scholar 

  • Simões M, Breitkreuz L, Alvarado M, Baca S, Cooper JC, Heins L, Lieberman BS (2016) The evolving theory of evolutionary radiations. Trends Ecol Evol 31:27–34

    PubMed  CrossRef  Google Scholar 

  • Stauffer JR, McKaye K (2002) Descriptions of three new species of cichlid fishes (Teleostei: Cichlidae) from Lake Xiloá, Nicaragua

    Google Scholar 

  • Stauffer JR, McCrary JK, Black KE (2008) Three new species of cichlid fishes (Teleostei: Cichlidae) from Lake Apoyo, Nicaragua. Proc Biol Soc Wash 121:117–129

    CrossRef  Google Scholar 

  • Swain FM (1966) Bottom sediments of Lake Nicaragua and Lake Managua, Western Nicaragua. J Sediment Res 36:522–540

    Google Scholar 

  • Torres-Dowdall J, Handelsman CA, Reznick DN, Ghalambor CK (2012) Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata). Evolution 66:3432–3443

    PubMed  CrossRef  Google Scholar 

  • Torres-Dowdall J, Machado-Schiaffino G, Kautt AF, Kusche H, Meyer A (2014) Differential predation on the two colour morphs of Nicaraguan Crater lake Midas cichlid fish- implications for the maintenance of its gold-dark polymorphism. Biol J Linn Soc 112:123–131

    CrossRef  Google Scholar 

  • Torres-Dowdall J, Golcher-Benavides J, Machado-Schiaffino G, Meyer A (2017a) The role of rare morph advantage and conspicuousness in the stable gold-dark colour polymorphism of a crater lake Midas cichlid fish. J Anim Ecol 86:1044–1053

    PubMed  CrossRef  Google Scholar 

  • Torres-Dowdall J, Pierotti ME, Härer A, Karagic N, Woltering JM, Henning F, Elmer KR, Meyer A (2017b) Rapid and parallel adaptive evolution of the visual system of Neotropical Midas cichlid fishes. Mol Biol Evol 34:2469–2485

    CAS  PubMed  CrossRef  Google Scholar 

  • Villa J (1976) Ichthyology of the lakes of Nicaragua: historical perspective. In: Thorson TB (ed) Investigations of the ichthyofauna of Nicaraguan lakes. University of Nebraska-Lincoln, Lincoln, pp 101–113

    Google Scholar 

  • Wald G (1961) The visual function of the vitamins A. In: Harris RS, Dwight JI (eds) Vitamins & hormones. Elsevier, London, pp 417–430

    Google Scholar 

  • Webb PW (1994) The biology of fish swimming. In: Maddock L, Bone Q, Rayner JV (eds) Mechanics and physiology of animal swimming. Cambridge University Press, Cambridge, pp 45–62

    CrossRef  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    CrossRef  Google Scholar 

  • Weyl R (1980) Geology of Central America. In: Bender FEA (ed) Beiträge zur Regionalen Geologie der Erdepp, 2nd Gebr. Borntraeger, Berlin

    Google Scholar 

  • White MJD (1978) Modes of speciation. WH Freeman, San Francisco

    Google Scholar 

  • Wilson AB, Noack-Kunnmann K, Meyer A (2000) Incipient speciation in sympatric Nicaraguan crater lake cichlid fishes: sexual selection versus ecological diversification. Proc R Soc B 267:2133–2141

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wimberger PH (1992) Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biol J Linn Soc 45:197–218

    Google Scholar 

  • Xiong P, Hulsey CD, Meyer A, Franchini P (2018) Evolutionary divergence of 3’ UTRs in cichlid fishes. BMC Genomics 19:433

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Xiong P, Hulsey CD, Fruciano C, Wong WY, Nater A, Kautt AF, Simakov O, Pippel M, Kuraku S, Meyer A, Franchini P (2020) The comparative genomic landscape of adaptive radiation in Crater Lake Cichlid Fishes. Mol Ecol. https://doi.org/10.1111/mec.15774

  • Yokoyama S, Yokoyama R (1996) Adaptive evolution of photoreceptors and visual pigments in vertebrates. Annu Rev Ecol Syst 27:543–567

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature B.V.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Torres-Dowdall, J., Meyer, A. (2021). Sympatric and Allopatric Diversification in the Adaptive Radiations of Midas Cichlids in Nicaraguan Lakes. In: Abate, M.E., Noakes, D.L. (eds) The Behavior, Ecology and Evolution of Cichlid Fishes. Fish & Fisheries Series, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2080-7_6

Download citation