Skip to main content

Detection of Biological Warfare Agents Using Biosensors

  • Conference paper
  • First Online:
Toxic Chemical and Biological Agents

Abstract

This chapter surveys the current detection technologies used in commercially available biosensors for identifying biological warfare agents (BAs). Much of the content presented was obtained from the open-source literature and is an introduction to biosensor fundamentals. A glance at these technologies is presented with emphasis placed on the principles of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eitzen EM Jr, Takafuji ET (1997) Historical overview of biological warfare. In: Sidell FR, Takafuji ET, Franz DR (eds) Medical aspects of chemical and biological warfare. Office of the Surgeon General, Borden Institute, Walter Reed Army Medical Center, Washington, DC, pp 415–423

    Google Scholar 

  2. Ridel R (2004) Biological warfare and bioterrorism: a historical review. Proc Bayl Univ Med Cent 17(4):400–406

    Article  Google Scholar 

  3. WHO (2003) Severe acute respiratory syndrome (SARS). Wkly Epidemiol Rec 78. 86.92

    Google Scholar 

  4. Gray C (2007) Another bloody century: future warfare, Phoenix, pp 265–266

    Google Scholar 

  5. Heymann DL (2001) Strengthening global preparedness for defense against infectious disease threats. Committee on Foreign Relations, United States Senate. Hearing on the threat of bioterrorism and the Spread of Infectious Diseases

    Google Scholar 

  6. Hoffman RE, Norton JE (2000) Lessons learned from a full-scale bioterrorism exercise. Emerg Infect Dis 6:652–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. US Commission on National Security in the 21st Century (1999) New World Coming: American Security in the 21st Century, supporting research and analysis. September 15, 1999

    Google Scholar 

  8. Szinicz L (2005) History of chemical and biological warfare agents. Toxicology 214(3):167–181

    Article  CAS  PubMed  Google Scholar 

  9. CDC. Biological and Chemical Terrorism: Strategic Plan for Preparedness and Response (2005) Recommendatons of the CDC strategic planning workgroup. MMWR Recomm Rep 49.(RR-4:1–26

    Google Scholar 

  10. Cenciarelli O, Rea S, Carestia M, D’Amico F, Malizia A, Bellecci C, Gaudio P, Gucciardino A, Fiorito R (2013) Bioweapons and bioterrorism: a review of history and biological agents. Defence S&T Tech Bull 6(2):111–129

    Google Scholar 

  11. Barrett JA , Bowen GW, Golly SM, Hawley C, Jackson WM, Laughlin L, Lynch ME, (1998) Assessment of biological agent detection equipment for emergency responders, June 1, 1998. Chemical Biological Information Analysis Center (CBIAC), P.O. Box 196, Gunpowder, MD 21010-0196

    Google Scholar 

  12. Chemical and Biological Terrorism: Research and Development to Improve Civilian Medical Response to Chemical and Biological Terrorism Incidents, National Academy of Sciences (1999) National Academy Press, Washington, DC 2005

    Google Scholar 

  13. Barrett JA, Bowen GW, Golly SM, Hawley C, Jackson WM, Laughlin L, Lynch ME, (1998) Final Report on the Assessment of Biological Agent Detection Equipment for Emergency Responders, U.S. Army Chemical and Biological Defense Command (CBDCOM), CBIAC, P.O. Box 196, Gunpowder, MD 21010-0196

    Google Scholar 

  14. Marquette CA, Blum LJ (2006) State of the art and recent advances in immunoanalytical systems. Biosens Bioelectron 21(8):1424–1433

    Article  CAS  PubMed  Google Scholar 

  15. IUPAC (1992), 64: 143

    Google Scholar 

  16. Sapsforda KE, Bradburneb C, Delehantyb JB, Medintzb I (2008) Sensors for detecting biological agents. Mater Today 11(3):38–49

    Article  Google Scholar 

  17. Thevenot R, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71:2333–2348

    Article  CAS  Google Scholar 

  18. Thevenot R, Toth K, Durst RA, Wilson GS (2010) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  Google Scholar 

  19. Thevenot R, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Anal Lett 34:635–659

    Article  CAS  Google Scholar 

  20. Daly P, Collier T, Doyle S (2002) PCR-ELISA detection of Escherichia coli in milk. Lett Appl Microbiol 34:222–226

    Article  CAS  PubMed  Google Scholar 

  21. Tsai W-L, Miller CE, Richter ER (2000) Determination of the sensitivity of a rapid Escherichia coli O157:H7 assay for testing 375-gram composite samples. Appl Environ Microbio 66(9):4149–4151

    Article  CAS  Google Scholar 

  22. Nicolas P, Mor A (1995) Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol 49:277–304

    Article  CAS  PubMed  Google Scholar 

  23. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–339

    Article  CAS  PubMed  Google Scholar 

  24. Meng H, Kumar K (2007) Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J Am Chem Soc 129:15615–15622

    Article  CAS  PubMed  Google Scholar 

  25. Mannoor MS, Zhang C, Link J, McAlpine MS (2010) Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci U S A 107(45):19207–19212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zasloff M, Martin B, Chen HC (1988) Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Natl Acad Sci U S A 85:910–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84:5449–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsuzaki K, Sugishita KI, Harada M, Fujii N, Miyajima K (1997) Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. BBA-Biomembranes 1327:119–130

    Article  CAS  PubMed  Google Scholar 

  29. Taitt CR, Shriver-Lake LC, Ngundi MM, Ligler FS (2008) Array biosensor for toxin detection: continued advances. Sensors 8:8361–8377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, JPb G (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377(3):469–477

    Article  CAS  PubMed  Google Scholar 

  31. Feldstein MJ, Golden JP, Ligler FS, Rowe CA (2001) Reflectively coated optical waveguide and fluidics cell integration. U.S. Pat. 6: 192,168

    Google Scholar 

  32. Golden JP, Taitt CR, Shriver-Lake LC, Shubin YS, Ligler FS (2005) A portable automated multianalyte biosensor. Talanta 65(5):1078–1085

    Article  CAS  PubMed  Google Scholar 

  33. Ngundi MM, Qadri SA, Wallace EV, Moore MH, Lassman ME, Shriver-Lake LC, Ligler FS, Taitt CR (2006) Detection of deoxynivalenol in foods and indoor air using an array biosensor. Environ Sci Technol 40(7):2352–2356

    Article  CAS  PubMed  Google Scholar 

  34. Sapsford KE, Taitt CR, Fertig S, Moore MH, Lassman ME, Maragos CA, ShriverLake LC (2006) Indirect competitive immunoassay for detection of aflatoxin B-1 in corn and nut products using the array biosensor. Biosens Bioelectron 21(12):2298–2305

    Article  CAS  PubMed  Google Scholar 

  35. Ngundi MM, Taitt CR (2006) An Array biosensor for detection of bacterial and toxic contaminants of foods. In: Diagnostic bacteriology protocols. Humana Press, Totowa, pp 53–68

    Chapter  Google Scholar 

  36. Shriver-Lake LC, Erickson JS, Sapsford KE, Ngundi MM, Shaffer KM, Kulagina NV, Hu JE, Gray SA, Golden JP, Ligler FS, Taitt CR (2007) Blind laboratory trials for multiple pathogens in spiked food matrices. Anal Lett 40(16–18):3219–3323

    Article  CAS  Google Scholar 

  37. Milne EA (1941) Augustus Edward Hough love. 1863–1940. Obituary Notices of Fellows of the Royal Society 3(9):466

    Google Scholar 

  38. O’Connor JJ, Robertson EF Augustus Edward Hough love. In: MacTutor history of mathematics archive. University of St Andrews, St. Andrews

    Google Scholar 

  39. Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519

    Article  PubMed  CAS  Google Scholar 

  40. https://www.mccoycomponents.com/blog/view/anatomy-of-baw-saw-and-fbar-filters

  41. Weinheim E, Wohltjen H, Dessy R (1979) Anal Chem 51:1458–1464

    Article  Google Scholar 

  42. Collings AF, Caruso F (1997) Rep Prog Phys 60:1397–1445

    Article  CAS  Google Scholar 

  43. Tamarin O, Comeau S, Déjous C, Moynet D, Rebière D, Bezian J, Pistré J (2003) Biosens Bioelectron 18:755–763

    Article  CAS  PubMed  Google Scholar 

  44. Stubbs DD, Hunt WD, Lee SH, Doyle DF (2002) Biosens Bioelectron 17:471–477

    Article  CAS  PubMed  Google Scholar 

  45. Stubbs DD, Lee SH, Hunt WD (2003) Anal Chem 75:6231–6235

    Article  CAS  PubMed  Google Scholar 

  46. Sapsford KE, Berti L, Medintz IL (2005) Fluorescence resonance energy transfer concepts, applications and advances. Minerva Biotech 16:253–279

    Google Scholar 

  47. Goldman ER, Medintz IL, Mattoussi H (2006) Luminescent quantum dots in immunoassays. Anal Bioanal Chem 384:560–563

    Article  CAS  PubMed  Google Scholar 

  48. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, TranPT AGP (2002) Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 124:6378–6638

    Article  CAS  PubMed  Google Scholar 

  49. Wang SP, Mamedova N, Kotov NA, Chen W, Studer J (2002) Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett 2:817–822

    Article  CAS  Google Scholar 

  50. Sun BQ, Xie WZ, Yi GS, Chen DP, Zhou YX, Cheng J (2001) Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J Immunological Methods 249:85–89

    Article  CAS  Google Scholar 

  51. Hoshino A, Fujioka K, Manabe N, Yamaya S, Goto Y, Yasuhara M, Yamamoto K (2005) Simultaneous multicolor detection system of the single-molecular microbial antigen with total internal reflection fluorescence microscopy. Microbiology & Immunology 49:461–470

    Article  CAS  Google Scholar 

  52. Liang RQ, Li W, Li Y, Tan CY, Li JX, Jin YX, Ruan KC (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33:e17

    Google Scholar 

  53. Sapsford KE, Thomas P, Medintz IL, Hedi M (2006) Biosensing with luminescent semiconductor quantum dots. Sensor 6:925–953

    Article  CAS  PubMed Central  Google Scholar 

  54. Yang L, Li Y (2006) Simultaneous detection of Escherichia coli O157∶ H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131(3):394-401

    Google Scholar 

  55. Jares-Erijman E, T b J (2003) FRET Imaging. Nature Biotech 21:1387–1395

    Article  CAS  Google Scholar 

  56. Sapsford KE, Berti L, Medintz IL (2005) Fluorescence resonance energy transfer concepts, applications and advances. Minerva Biotech 16:253–279

    Google Scholar 

  57. Sandros MG, Shete V, Benson DE (2006) Selective, reversible, reagentless maltose biosensing with core-shell semiconducting nanoparticles. Analyst 131:229–235

    Article  CAS  PubMed  Google Scholar 

  58. Petrovick MS, James D, Harper JD, Frances E, Nargi FE, Eric D, Schwoebel ED, Mark C, Hennessy MC, Todd H, Rider TH, Hollis MA (2007) Rapid sensors for biological-agent identification. LINCOLN LABORATORY JOURNAL (17):63–84

    Google Scholar 

  59. Cormie MJ, Prasher DC, Longiaru M, McCann RO (1989) The enzymology and molecular biology of the Ca2+-activated photoprotein, Aequorin. Photochem Photobiol 49(4):509–512

    Article  Google Scholar 

  60. Shimomura O, Musicki B, Kishi Y (1989) Semi-synthetic Aequorins with improved sensitivity to Ca2+ ions. Biochem J 261:913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wilson HA, Greenblatt D, Poeni M, Finkelman FD, Tsien RY (1987) Cross-linkage of B lymphocyte surface immunoglobulin by anti-Ig or antigen induces prolonged oscillation of intracellular ionized calcium. J Exp Med 166:601–606

    Article  CAS  PubMed  Google Scholar 

  62. Tsuji FJ, Inouye S, Goto T, Sakaki Y (1983) Site-specific mutagenesis of the calcium-binding photoprotein aequorin. Proc Natl Acad Sci U S A 83:8107–8111

    Article  Google Scholar 

  63. Shimomura O, Johnson FH (1978) Peroxidized coelenterazine, the active group in the photoprotein aequorin. Proc Natl Acad Sci U S A 75(6):2611–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rider TH, Petrovick MS, Nargi FE A B cell–based sensor for rapid identification of pathogens. Science 301:213–215

    Google Scholar 

  65. Senior JM, Yousif JM (2009) Optical fiber communications: principles and practice. Pearson Education

    Google Scholar 

  66. Epstein JR, Leung APK, Kyong-Hoon L, Walt DR (2003) High-density, microsphere-based fiber optic DNA microarrays. Biosens Bioelectron 18:541–546

    Article  CAS  PubMed  Google Scholar 

  67. http://spie.org/newsroom/decoding-dna

  68. Pantano P, Walt DR (1996) Ordered nanowell arrays. Chem Mater 8:2832–2835

    Article  CAS  Google Scholar 

  69. Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773

    Article  CAS  PubMed  Google Scholar 

  70. Epstein JR, Lee M, Walt DR (2002) High-density fiber-optic genosensor microsphere array capable of zeptomole detection limits. Anal Chem 74:1836–1840

    Article  CAS  PubMed  Google Scholar 

  71. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  72. (A) Ferguson JA, Steemers FJ, Walt DR (2000) High density fiber optic DNA random microsphere array. Anal Chem 72:5618–5624; (B) Walt DR (2000) Bead-based fiber-optic arrays. Science 287(5452):451–45

    Google Scholar 

  73. Mullis KB (1994) Polymerase chain reaction (Nobel prize). Angew Chem 106:1271–1276

    Article  CAS  Google Scholar 

  74. Nguyen HH, Park J, Sebyung Kang S, Kim M (2013) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15:10481–10510

    Article  CAS  Google Scholar 

  75. Stephanopoulos N, Francis MB (2006) Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7:876–884

    Article  CAS  Google Scholar 

  76. Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754

    Article  CAS  PubMed  Google Scholar 

  77. Phelan ML, Nock S (2003) Generation of bioreagents for protein chips. Proteomics 3:2123–2134

    Article  CAS  PubMed  Google Scholar 

  78. Šípová H, Homola J (2013) Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta 773:9–23

    Article  PubMed  CAS  Google Scholar 

  79. De Feijte JA, Benjamins J, Veer FA (1978) Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface. Biopolymers 17:1759–1772

    Article  Google Scholar 

  80. Smith EA, Corn RM (2003) Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based forma. Appl Spectrosc 57:320A–332A

    Article  CAS  PubMed  Google Scholar 

  81. Steiner G (2004) Surface plasmon resonance imaging. Anal Bioanal Chem 379:328–331

    Article  CAS  PubMed  Google Scholar 

  82. Jung SO, Ro HS, Kho BH, Shin YB, Kim MG, Chung BH (2005) Surface plasmon resonance imaging-based protein arrays for high-throughput screening of protein-protein interaction inhibitors. Proteomics 5:4427–4431

    Article  CAS  PubMed  Google Scholar 

  83. Kim M, Han SH, Shin Y (2007) Surface plasmon resonance biosensor chips. Biochip J 1:81–89

    Google Scholar 

  84. Tomar A, Gupta G, Singh MK, Boopathi M, Singh B, Dhaked RK (2016) Surface plasmon resonance sensing of biological warfare agent botulinum neurotoxin A. J Bioterror Biodef 7(2):142–154

    Article  CAS  Google Scholar 

  85. Tsai WC, Li IC (2009) SPR-based immunosensor for determining staphylococcal enterotoxin a. Sens Actuators B Chem 136:8–12

    Article  CAS  Google Scholar 

  86. Stenberg E, Persson B, Roos H, Urbaniczky C (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J Coll Interf Sci 143:513–526

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Banoub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banoub, J.H., Mikhael, A. (2020). Detection of Biological Warfare Agents Using Biosensors. In: Sindona, G., Banoub, J.H., Di Gioia, M.L. (eds) Toxic Chemical and Biological Agents. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2041-8_2

Download citation

Publish with us

Policies and ethics