Skip to main content

Defense Against Biological Terrorism: Vaccines and Their Characterizations

  • Conference paper
  • First Online:
Toxic Chemical and Biological Agents

Abstract

This chapter presents an introduction to infective diseases and potential biological agents that could potentially be used for bioterrorism. Technical brief description of the possible treatments and preventions of these biothreats is presented with emphasis placed on the principles of immunological defenses, vaccination, and preparation of vaccines. In principle, various types of vaccines that are commercially used as “antibacterial or anticancer vaccines” can be produced using various types of antigenic carbohydrate haptens containing relevant epitopes. This review highlights the strategies used for the characterization of such synthetic neoglycoconjugate vaccines used as a means of protection against biothreats. A complete mass spectrometry-based strategy for validating the preparations of the neoglycoconjugate vaccine is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Friedlander AM, Hauer J, McDade J, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Tonat K (1999) Anthrax as a biological weapon: medical and public health management. Working group on civilian biodefense. JAMA 281(18):1735–1745

    Article  CAS  PubMed  Google Scholar 

  2. Inglesby TV, O’Toole T, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Friedlander AM, Gerberding J, Hauer J, Hughes J, McDade J, Osterholm MT, Parker G, Perl TM, Russell PK, Tonat K (2002) Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA 287(17):2236–2252

    Article  PubMed  Google Scholar 

  3. Henderson DA, Inglesby TV, Bartlett JG, Ascher MS, Eitzen E, Jahrling PB, Hauer J, Layton M, McDade J, Osterholm MT, O’Toole T, Parker G, Perl T, Russell PK, Tonat K (1999) Smallpox as a biological weapon: medical and public health management. Working group on civilian biodefense. JAMA 281(22):2127–2137

    Article  CAS  PubMed  Google Scholar 

  4. Lovinger S (2002) Addressing the unthinkable: preparing to face smallpox. JAMA 288(20):2530

    PubMed  Google Scholar 

  5. Inglesby TV, Dennis DT, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer J, Koerner JF, Layton M, McDade J, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Schoch-Spana M, Tonat K (2000) Plague as a biological weapon: medical and public health management. Working group on civilian biodefense. JAMA 283(17):2281–2290

    Article  CAS  PubMed  Google Scholar 

  6. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285(8):1059–1070

    Article  CAS  PubMed  Google Scholar 

  7. Dennis DT, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer J, Layton M, Lillibridge SR, McDade JE, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Tonat K (2001) Tularemia as a biological weapon: medical and public health management. JAMA 285(21):2763–2773

    Article  CAS  PubMed  Google Scholar 

  8. Porter RK (ed) (2011) The Merck manual of diagnosis and therapy, 19th edn. Merck Sharp & Dohme Corp., Whitehouse Station

    Google Scholar 

  9. Choudhary S, Malik YS, Tomar S (2020) Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in Silico structure-based virtual screening approach. ChemRxiv Preprint. https://doi.org/10.26434/chemrxiv.12005988.v1

  10. Mantis NJ, Morici LA, Roy CJ (2011) Mucosal Vaccines for Biodefense. In: Kozlowski P (ed) Mucosal vaccines. Current topics in microbiology and immunology, vol 354. Springer, Berlin, Heidelberg

    Google Scholar 

  11. Rotz LD, Khan AS, Lillibridge SR et al (2002) Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8:225–230

    Article  PubMed  PubMed Central  Google Scholar 

  12. Artenstein AW (2008) New generation smallpox vaccines: a review of preclinical and clinical data. Rev Med Virol 18:217–231

    Article  CAS  PubMed  Google Scholar 

  13. Sobel J, Khan AS, Swerdlow DL (2002) Threat of a biological terrorist attack on the US food supply: the CDC perspective. Lancet 359:874–880

    Article  PubMed  Google Scholar 

  14. Bottaccioli F (2002) Il sistema immunitario: la bilancia della vita – Com’è fatto, come funziona in salute e in malattia. Tecniche Nuove. ISBN 8848109462, www.tecnichenuove.com

  15. Actor J (2014) Introductory immunology. 1st edition - basic concepts for interdisciplinary applications. Academic. ISBN: 9780124200302

    Google Scholar 

  16. Abbas A, Lichtman AH, Pillai S (2014) Cellular and molecular immunology, 8th edn, Saunders, ISBN: 9780323316149

    Google Scholar 

  17. Leppla SH, Robbins JB, Schneerson R et al (2002) Development of an improved vaccine for anthrax. J Clin Invest 110:141–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Metzger DW, Bakshi CS, Kirimanjeswara G (2007) Mucosal immunopathogenesis of Francisella tularensis. Ann N Y Acad Sci 1105:266–283

    Article  CAS  PubMed  Google Scholar 

  19. Kappler J, Kotzin B, Herron L et al (1989) V beta-specific stimulation of human T cells by staphylococcal toxins. Science 244:811–813

    Article  CAS  PubMed  Google Scholar 

  20. White J, Herman A, Pullen AM et al (1989) The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56:27–35

    Article  CAS  PubMed  Google Scholar 

  21. Murphy K (2011) Janeway’s immunobiology, 8th edition. Garland Science. ISBN-10: 0815342438

    Google Scholar 

  22. Abbas AK, Lichtman AH (2010) Basic immunology, 3rd edn. Saunders Kindle Edition ISBN- 10: 141605569X

    Google Scholar 

  23. Plotkin SA (2008) Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis 47:401–409

    Article  PubMed  Google Scholar 

  24. Heidelberger M, Avery OT (1923) The soluble specific substance of pneumococcus. J Exp Med 38:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  CAS  PubMed  Google Scholar 

  26. Rumbo M, Nempont C, Kraehenbuhl J-P, Sirard J-C (2006) Mucosal interplay among commensal and pathogenic bacteria: lessons from flagellin and toll-like receptor 5. FEBS Lett (12):2976–2984

    Google Scholar 

  27. Shetty N, Aarons E, Andrews J (2009) Structure and functions of microbes. In: Shetty N, Tang JW, Andrews J (eds) Infectious disease: pathogenesis, prevention, and case studies. Wiley, London, p 15

    Google Scholar 

  28. Corbett D, Hudson T, Roberts IS (2010) Bacterial polysaccharide capsules. In: Konig H (ed) Prokaryotic cell wall compounds. Springer, Heidelberg, p 111

    Chapter  Google Scholar 

  29. Monack DM, Mueller A, Falkow S (2004) Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2:747–765

    Article  CAS  PubMed  Google Scholar 

  30. Westphal O, Liideritz O, Bister F (1952) Ueber die Extraktion von Bakterien mit Phenol/ Wasser. Z Naturforsch. 7B:148–155

    Google Scholar 

  31. Pupo E, Aguila A, Santana H, Núnez JF, Castellanos-Serra L, Hardy E (1999) Mice immunization with gel electrophoresis-micropurified bacterial lipopolysaccharides. Electrophoresis 20:458–461

    Article  CAS  PubMed  Google Scholar 

  32. Davis MR Jr, Goldberg JB (2012) Purification and visualization of lipopolysaccharide from Gram-negative bacteria by hot aqueous-phenol extraction. J Vis Exp 28:e3916, 1–3

    Google Scholar 

  33. Nagy G, Pál T (2008) Lipopolysaccharide: a tool and target in enterobacterial vaccine development. Biol Chem 389:513–520

    Article  CAS  PubMed  Google Scholar 

  34. Reisser D, Pance A, Jeannin JF (2002) Mechanisms of the antitumoral effect of lipid

    Google Scholar 

  35. Bowden RA, Cloeckaert A, Zygmunt MS, Dubray G (1995) Outer-membrane protein- and rough lipopolysaccharide-specific monoclonal antibodies protect mice against Brucella ovis. J Med Microbiol 43:344–347

    Article  CAS  PubMed  Google Scholar 

  36. Fulop M, Mastroeni P, Green M, Titball RW (2001) Role of antibody to lipopolysaccharide in protection against low- and high-virulence strains of Francisella tularensis. Vaccine 19:4465–4472

    Article  CAS  PubMed  Google Scholar 

  37. Ada G, Isaacs D (2003) Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect 9:79–85

    Article  CAS  PubMed  Google Scholar 

  38. Landsteiner K (1945) The specificity of serological reactions. Harvard University Press, Cambridge

    Google Scholar 

  39. Avery OT, Goebel WF (1929) Chemo-immunological studies on conjugated carbohydrate-proteins. II Immunological specificity of synthetic sugar-protein antigens. J Exp Med 50:533–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pollard AJ, Perrett KP, Beverley PC (2009) Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat Rev 9:213–220

    CAS  Google Scholar 

  41. Daum RS, Hogerman D, Rennels MB, Bewley K, Malinoski F, Rothstein E, Reisinger K, Block S, Keyserling H, Steinhoff M (1997) Infant immunization with pneumococcal CRM 197 vaccines: effect of saccharide size on immunogenicity and interactions with simultaneously administrated vaccines. J Infect Dis 176:445–455

    Article  CAS  PubMed  Google Scholar 

  42. Lefeber DJ, Kamerling JP, Vliegenthart JFG (2001) Synthesis of Streptococcus pneumoniae type 3 neoglycoproteins varying in oligosaccharide chain length, loading, and carrier protein. Chem Eur J 7:4411

    Article  CAS  PubMed  Google Scholar 

  43. Paoletti LC, Kasper DL, Michon F, DiFabio J, Jennings HJ, Tosteson TD, Wessels MR (1992) Effects of chain length on the immunogenicity in rabbits of group B Streptococcus type III oligosaccharide-tetanus toxoid conjugates. J Clin Invest 89:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chernyak A, Kondo S, Wade TK, Meeks MD, Alzari PM, Fournier JM, Taylor RK, Kováč P, Wade WF (2002) Induction of protective immunity by synthetic Vibrio cholerae hexasaccharide derived from V. cholerae O1 Ogawa lipopolysaccharide bound to a protein carrier. J Infect Dis 185:950–962

    Article  CAS  PubMed  Google Scholar 

  45. Dick WE Jr, Beurret M (1989) A survey and consideration of design and preparation factors. In: Cruse JM, Lewis RE Jr (eds) Glycoconjugates of bacterial carbohydrate antigens, vol 10. Krager, Basel, pp 48–114

    Google Scholar 

  46. Tietze LF, Arlt M, Beller M, Glüsenkamp KH, Jähde E, Rajewsky MF (1991) Anticancer agents, 15. Squaric acid diethyl ester: a new coupling reagent for the formation of drug biopolymer conjugates. Synthesis of squaric acid ester amides and diamides. Chem Ber 124:1215–1221

    Article  CAS  Google Scholar 

  47. Glüsenkamp KH, Drosdziok W, Eberle G, Jähde E, Rajewsky MFZ (1991) Naturforsch C Biosci 46:498–501

    Article  Google Scholar 

  48. Tietze LF, Schröter C, Gabius S, Brinck U, Goerlach-Graw A, Gabius HJ (1991) Conjugation of p-aminophenyl glycosides with squaric acid diesters to a carrier protein and the use of the neoglycoprotein in the histochemical detection of lectines. Bioconjug Chem 2:148–153

    Article  CAS  PubMed  Google Scholar 

  49. Cohen S, Cohen SG (1966) Preparation and reactions of derivatives of squaric acid. Alkoxy-, hydroxy-, and aminocyclobutenediones 1. J Am Chem Soc 88:1533–1536

    Article  CAS  Google Scholar 

  50. Grünefeld J, Bredhauer G, Zinner G (1985) Zur reaktion von quadratsäuredimethylester mit N, N -disubstituierten hydrazin-derivaten. Arch Pharm (Weinheim) 318:984–988

    Article  Google Scholar 

  51. Bergh A, Magnusson BG, Ohlsson J, Wellmar U, Nilsson UJ (2001) Didecyl squarate – a practical amino-reactive cross-linking reagent for neoglycoconjugate synthesis. Glycoconj J 18:615–621

    Article  CAS  PubMed  Google Scholar 

  52. Kamath VP, Diedrich P, Hindsgaul O (1996) Use of diethyl squarate for the coupling of oligosaccharide amines to carrier proteins and characterization of the resulting neoglycoproteins by MALDI-TOF mass spectrometry. Glycoconj J 13:315–319

    Article  CAS  PubMed  Google Scholar 

  53. Hou S-J, Saksena R, Kováč P (2008) Preparation of glycoconjugates by dialkyl squarate chemistry revisited. Carbohydr Res 343:196–210

    Article  CAS  PubMed  Google Scholar 

  54. Saksena R, Adamo R, Kováč P (2007) Immunogens related to the synthetic tetrasaccharide side chain of the Bacillus anthracis exosporium. Bioorg Med Chem 15:4283–4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bongat AFG, Saksena R, Adamo R, Fujimoto Y, Shiokawa Z, Peterson DC, Fukase K, Vann WF, Kováč P (2010) Multimeric bivalent immunogens from recombinant tetanus toxin HC fragment, synthetic hexasaccharides and a glycopeptide adjuvant. Glycoconj J 27:69–77

    Article  CAS  PubMed  Google Scholar 

  56. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  57. Morelle W, Michalski JC (2005) Glycomics and mass spectrometry. Curr Pharm Des 11:2615–2645

    Article  CAS  PubMed  Google Scholar 

  58. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem 3:433–465

    Article  CAS  Google Scholar 

  60. Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G (2005) Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem Rev 105:1869–1915

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y, Go EP, Desaire H (2008) Maximizing coverage of glycosylation heterogeneity in MALDI-MS analysis of glycoproteins with up to 27 glycosylation sites. Anal Chem 80:3144–3158

    Article  CAS  PubMed  Google Scholar 

  62. Laštovičková M, Chmelik J, Bobalova J (2009) The combination of simple MALDI matrices for the improvement of intact glycoproteins and glycans analysis. Int J Mass Spectrom 281:82–88

    Article  CAS  Google Scholar 

  63. Kamath VP, Diedrich P, Hindsgaul O (1996) Use of diethyl squarate for the coupling of oligosaccharide amines to carrier proteins and characterization of the resulting neoglycoproteins by MALDI-TOF mass spectrometry. Glycoconj J 13:315–319

    Article  CAS  PubMed  Google Scholar 

  64. Issaq HJ, Conrads TP, Prieto DA, Tirumalai R, Veenstra TD (2003) SELDI-TOF MS for diagnostic proteomics. Anal Chem 75:148A–155A

    Article  CAS  PubMed  Google Scholar 

  65. Liu C (2011) The application of SELDI-TOF-MS in clinical diagnosis of cancers. J Biomed Biotechnol 6:245821

    Google Scholar 

  66. Chernyak A, Karavanov A, Ogawa Y, Kováč P (2001) Conjugating oligosaccharides to proteins by squaric acid diester chemistry: rapid monitoring of the progress of conjugation, and recovery of the unused ligand. Carbohydr Res 330:479–486

    Article  CAS  PubMed  Google Scholar 

  67. Jahouh F, Saksena R, Aiello D, Napoli A, Sindona G, Kováč P, Banoub JH (2010) Glycation sites in neoglycoconjugates from the terminal monosaccharide antigen of the O-PS of Vibrio cholerae O1, serotype Ogawa, and BSA revealed by matrix-assisted laser desorption- ionization tandem mass spectrometry. J Mass Spectrom (10):1148–1159

    Google Scholar 

  68. Jahouh F, Saksena R, Kováč P, Banoub JH (2012) Revealing the glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1 serotype Ogawa with the BSA protein carrier using LC-ESI-QqTOF-MS/MS. J Mass Spectrom 47:890–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jahouh F, Hou SJ, Kováč P, Banoub JH (2011) Determination of the glycation sites of Bacillus anthracis neoglycoconjugate vaccine by MALDI-TOF/TOF-CID-MS/MS and LC-ESI- QqTOF-tandem mass spectrometry. J Mass Spectrom 46:993–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jahouh F, Hou SJ, Kováč P, Banoub JH (2012) Determination of glycation sites by tandem mass spectrometry in a synthetic lactose-bovine serum albumin conjugate, a vaccine model prepared by dialkyl squarate chemistry. Rapid Commun Mass Spectrom 26:749–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jahouh F, Xu P, Vann WF, Kováč P, Banoub JH (2013) Mapping the glycation sites in the neoglycoconjugate from hexasaccharide antigen of Vibrio cholerae , serotype Ogawa and the recombinant tetanus toxin C-fragment carrier. J Mass Spectrom 48:1083–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McCarthy PC, Saksena R, Peterson DC, Lee CH, An Y, Cipollo JF, Vann WF (2013) Chemoenzymatic synthesis of immunogenic meningococcal group C polysialic acid-tetanus Hc fragment glycoconjugates. Glycoconj J 30:857–870

    Article  CAS  PubMed  Google Scholar 

  73. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biol Mass Spectrom 11:601

    Article  CAS  Google Scholar 

  74. Johnson RS, Martin SA, Biemann K, Stults JT, Watson JT (1987) Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal Chem 59:2621–2625

    Article  CAS  PubMed  Google Scholar 

  75. Domon B, Costello C (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409

    Article  CAS  Google Scholar 

  76. Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671

    Article  CAS  PubMed  Google Scholar 

  77. Pries FG (1993) In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other gram- positive bacteria: biochemistry, physiology, and molecular biology. American Society for Microbiology, Washington, DC, p 3

    Google Scholar 

  78. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Boutiba-Ben Boubaker I, Ben Redjeb S (2001) Bacillus anthracis : causative agent of anthrax. Tunis Med 79:642–646

    CAS  PubMed  Google Scholar 

  80. Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, Fraser CM (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296:2028–2033

    Article  CAS  PubMed  Google Scholar 

  81. Turnbull PCB (1999) Defi nitive identifi cation of Bacillus anthracis -a review. J Appl Microbiol 87:237–240

    Article  CAS  PubMed  Google Scholar 

  82. Reed LJ, Muench H (1938) A simple method for estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  83. Hoffmaster AR, Fitzgerald CC, Ribot E, Mayer LW, Popovic T (2002) Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Emerg Infect Dis 8:1111–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chun J-H, Hong K-J, Cha SH, Cho M-H, Lee KJ, Jeong DH, Yoo C-K, Rhie G-e (2012) Complete genome sequence of Bacillus anthracis H9401, an isolate from a Korean patient with anthrax. J Bacteriol 194:4116–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Williams DD, Benedek O, Turnbough CL Jr (2003) Species-specifi c peptide ligands for the detection of Bacillus anthracis spores. Appl Environ Microbiol 69:6288–6293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chabot DJ, Scorpio A, Tobery SA, Little SF, Norris SL, Friedlander AM (2004) Anthrax capsule vaccine protects against experimental infection. Vaccine 23:43–47

    Article  CAS  PubMed  Google Scholar 

  87. Daubenspeck JM, Zeng H, Chen P, Dong S, Steichen CT, Krishna NR, Pritchard DG Jr, Turnbough CL (2004) Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. J Biol Chem 279:30945–30953

    Article  CAS  PubMed  Google Scholar 

  88. Burkitt WI, Giannakopulos AE, Sideridou F, Bashir S, Derrick PJ (2003) Discrimination effects in MALDI-MS of mixtures of peptides-analysis of the proteome. Aust J Chem 56:369–377

    Article  CAS  Google Scholar 

  89. Kratzer R, Eckerskorn C, Karas M, Lottspeich F (1998) Suppression effects in enzymatic peptide ladder sequencing using ultraviolet – matrix assisted laser desorption/ionization – mass spectrometry. Electrophoresis 19:1910–1919

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Banoub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bologna, M., Mikhael, A., Bologna, I., Banoub, J.H. (2020). Defense Against Biological Terrorism: Vaccines and Their Characterizations. In: Sindona, G., Banoub, J.H., Di Gioia, M.L. (eds) Toxic Chemical and Biological Agents. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2041-8_11

Download citation

Publish with us

Policies and ethics