Skip to main content

Effect of Au Layers on A1→L10 Phase Transition and Magnetic Properties of FePt Thin Films

Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Complex effect of annealing conditions (temperature, duration, atmosphere (vacuum, hydrogen)), thickness of intermediate Au layer, mechanical residual stresses and strains on the formation of a hard-magnetic L10 phase as well as structural and magnetic properties of [FePt(15 nm)/Au(7.5–30 nm)/FePt(15 nm)]n (n = 1; 2) layer stacks deposited by magnetron sputtering onto SiO2(100 nm)/Si(001) substrates was investigated.

It was shown that stress/strain level in FePt layers strongly depends on the Au interlayer thickness, leading to different onset temperatures of L10-FePt phase formation processes. Compressive strain occurring in the as-deposited FePt layers promotes lowering of the L10 ordering temperature.

Applying annealing in hydrogen, the A1 into L10-FePt phase transition in the FePt/Au/FePt stacks starts at 500 °C regardless of the intermediate Au layer thickness. The Au and FePt axial (111) textures were observed in the films annealed in this atmosphere. Higher values of coercivity can be obtained at lower temperatures compared to annealing in vacuum.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albrecht M, Brombacher C (2013) Rapid thermal annealing of Fe P t thin films. Phys Stat Sol (a) 210:1272–1281

    ADS  Google Scholar 

  2. Brombacher C, Schletter H, Daniel M et al (2012) FePtCu alloy thin films: morphology, L10 chemical ordering, and perpendicular magnetic anisotropy. J Appl Phys 112:073912

    ADS  Google Scholar 

  3. PDF Card № 00-029-0717, Cabri LJ, Feather CE (1975) Platinum-iron alloys: a nomenclature based on a study of natural and synthetic alloys. Can Mineral Can Mineral 13:117

    Google Scholar 

  4. Chen SK, Yuan FT, Liao WM et al (2006) Magnetic properties and microstructure study of high coercivity Au/FePt/Au trilayer thin films. J Magn Magn Mater 303:e251–e254

    Google Scholar 

  5. Chen SC, Sun TH, Chang CL et al (2011) Film thickness dependence of microstructures and magnetic properties in single-layered FePt films by in-situ annealing. Thin Solid Films 519:6964–6968

    ADS  Google Scholar 

  6. Christodoulides JA, Farber P, Dannl M et al (2001) Magnetic, structural and microstructural properties of FePt/M (M= C, BN) granular films. IEEE Trans Magn 37:1292–1294

    ADS  Google Scholar 

  7. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Publishing

    Google Scholar 

  8. Feng C, Zhan Q, Li B et al (2008) Magnetic properties and microstructure of FePt/Au multilayers with high perpendicular magnetocrystalline anisotropy. Appl Phys Lett 93:152513

    ADS  Google Scholar 

  9. Futamoto M, Nakamura M, Ohtake M et al (2016) Growth of L 10-ordered crystal in FePt and FePd thin films on MgO (001) substrate. AIP Adv 6:085302

    ADS  Google Scholar 

  10. Futamoto M, Nakamura M, Shimizu T et al (2018) Influence of stress and strain on L10 -ordered phase formation in FePt thin film. IEEE Trans Magn 54:1–4

    Google Scholar 

  11. Goyal R, Lamba S, Annapoorni S (2019) Modelling of strain induced magnetic anisotropy in Au additive FePt thin films. Prog Nat Sci Mater Int 29:517–524

    Google Scholar 

  12. Granz SD, Barmak K, Kryder MH (2012) Granular L10 FePt-B and FePt-B-Ag (001) thin films for heat assisted magnetic recording. J Appl Phys 111:07B709

    Google Scholar 

  13. Gruber W, Chakravarty S, Baehtz C et al (2011) Strain relaxation and vacancy creation in thin platinum films. Phys Rev Lett 107:265501

    ADS  Google Scholar 

  14. Hono K, Takahashi YK, Ju G et al (2018) Heat-assisted magnetic recording media materials. MRS Bull 43:93–99

    Google Scholar 

  15. Hsiao SN, Yuan FT, Chang HW et al (2009) Effect of initial stress/strain state on order-disorder transformation of FePt thin films. Appl Phys Lett 94:232505

    ADS  Google Scholar 

  16. Hsiao SN, Chen SK, Liu SH et al (2011) Effect of annealing process on residual strain/stress behaviors in FePt thin films. IEEE Trans Magn 47:3637–3640

    ADS  Google Scholar 

  17. Hsiao SN, Liu SH, Chen SK et al (2012) Effect of intrinsic tensile stress on (001) orientation in L 10 FePt thin films on glass substrates. J Appl Phys 111:07A702

    Google Scholar 

  18. Hsu YN, Jeong S, Laughlin DE et al (2003) The effects of Ag underlayer and Pt intermediate layers on the microstructure and magnetic properties of epitaxial FePt thin films. J Magn Magn Mater 260:282–294

    ADS  Google Scholar 

  19. Kief MT, Victora RH (2018) Materials for heat-assisted magnetic recording. MRS Bull 43:87–92

    Google Scholar 

  20. Kim JS, Koo YM, Shin N (2006) The effect of residual strain on (001) texture evolution in FePt thin film during postannealing. J Appl Phys 100:093909

    ADS  Google Scholar 

  21. Kim JS, Koo YM, Lee BJ et al (2006) The origin of (001) texture evolution in FePt thin films on amorphous substrates. J Appl Phys 99:053906

    ADS  Google Scholar 

  22. Kim JS, Koo YM (2008) Thickness dependence of (001) texture evolution in FePt thin films on an amorphous substrate. Thin Solid Films 516:1147–1154

    ADS  Google Scholar 

  23. Kim CS, Sapan JJ, Moyerman S et al (2010) Thickness and temperature effects on magnetic properties and roughness of L10- ordered FePt films. IEEE Trans Magn 46:2282–2285

    ADS  Google Scholar 

  24. Leistner K, Thomas J, Schlörb H et al (2004) Highly coercive electrodeposited FePt films by postannealing in hydrogen. Appl Phys Lett 85:3498–3500

    ADS  Google Scholar 

  25. Li X, Liu B, Sun H et al (2008) L10 phase transition in FePt thin films via direct interface reaction. J Phys D Appl Phys 41:235001

    ADS  Google Scholar 

  26. Liu M, Jin T, Hao L et al (2015) Effects of Ru and Ag cap layers on microstructure and magnetic properties of FePt ultrathin films. Nanoscale Res Lett 10:1–8

    ADS  Google Scholar 

  27. Lyubina J, Rellinghaus B, Gutfleisch O et al (2011) Structure and magnetic properties of L10-ordered Fe–Pt alloys and nanoparticles. In: Handbook of magnetic materials, vol 19. Elsevier, pp 291–407

    Google Scholar 

  28. Maret M, Brombacher C, Matthes P et al (2012) Anomalous x-ray diffraction measurements of long-range order in (001)-textured L 1 0 FePtCu thin films. Phys Rev B 86:024204

    ADS  Google Scholar 

  29. PDF Card № 03-065-9121, Menshikov A, Tarnóczi T, Kren E (1975) Magnetic structure of ordered FePt and Fe3 Pt alloys. Phys Stat Sol (a) 28(1):K85–K87

    ADS  Google Scholar 

  30. Minh PTL, Thuy NP, Chan NTN (2004) Thickness dependence of the phase transformation in FePt alloy thin films. J Magn Magn Mater 277:187–191

    ADS  Google Scholar 

  31. Nakaya M, Kanehara M, Yamauchi M et al (2007) Hydrogen-induced crystal structural transformation of FePt nanoparticles at low temperature. J Phys Chem C 111:7231–7234

    Google Scholar 

  32. Pavlova OP, Verbitska TI, Vladymyrskyi IA et al (2013) Structural and magnetic properties of annealed FePt/ag/FePt thin films. Appl Surf Sci 266:100–104

    ADS  Google Scholar 

  33. Platt CL, Wierman KW, Svedberg EB et al (2002) L–1 0 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive. J Appl Phys 92:6104–6109

    ADS  Google Scholar 

  34. Rasmussen P, Rui X, Shield JE (2005) Texture formation in FePt thin films via thermal stress management. Appl Phys Lett 86:191915

    ADS  Google Scholar 

  35. Takahashi YK, Hono K (2005) On low-temperature ordering of FePt films. Scr Mater 53:403–409

    Google Scholar 

  36. Vladymyrskyi IA, Karpets MV, Katona GL et al (2014) Influence of the substrate choice on the L10 phase formation of post-annealed Pt/Fe and Pt/Ag/Fe thin films. J Appl Phys 116:044310

    ADS  Google Scholar 

  37. Wang F, Xu X, Liang Y et al (2009) FeAu/FePt exchange-spring media fabricated by magnetron sputtering and postannealing. Appl Phys Lett 95:022516

    ADS  Google Scholar 

  38. Wang B, Barmak K (2011) Re-evaluation of the impact of ternary additions of Ni and cu on the A1 to L10 transformation in FePt films. J Appl Phys 109:123916

    ADS  Google Scholar 

  39. Wang LW, Shih WC, Wu YC et al (2012) Promotion of [001]-oriented L10-FePt by rapid thermal annealing with light absorption layer. Appl Phys Lett 101:252403

    ADS  Google Scholar 

  40. Weller D, Parker G, Mosendz O, Lyberatos A, Mitin D, Safonova NY, Albrecht M (2016) Review article: FePt heat assisted magnetic recording media. J Vac Sci Technol, B: Nanotechnol Microelectron: Mater, Process, Meas, Phenom 34(6):060801

    Google Scholar 

  41. Wierman KW, Platt CL, Howard JK et al (2003) Evolution of stress with L1 0 ordering in FePt and FeCuPt thin films. J Appl Phys 93:7160–7162

    ADS  Google Scholar 

  42. Wu AQ, Kubota Y, Klemmer T et al (2013) HAMR areal density demonstration of 1+ Tbpsi on spinstand. IEEE Trans Magn 49:779–782

    ADS  Google Scholar 

  43. Yamauchi M, Okubo K, Tsukuda T et al (2014) Hydrogen-induced structural transformation of AuCu nanoalloys probed by synchrotron X-ray diffraction techniques. Nanoscale 6:4067–4071

    ADS  Google Scholar 

  44. Yang WS, Sun TH, Chen SC et al (2019) Comparison of microstructures and magnetic properties in FePt alloy films deposited by direct current magnetron sputtering and high power impulse magnetron sputtering. J Alloys Compd 803:341–347

    Google Scholar 

  45. You CY, Takahashi YK, Hono K (2006) Particulate structure of FePt thin films enhanced by Au and Ag alloying. J Appl Phys 100:056105

    ADS  Google Scholar 

  46. Yu YS, Li HB, Li WL et al (2008) Low-temperature ordering of L10 FePt phase in FePt thin film with AgCu underlayer. J Magn Magn Mater 320:L125–L128

    Google Scholar 

  47. Yu YS, Li HB, Li WL et al (2010) Structure and magnetic properties of magnetron-sputtered [(Fe/Pt/Fe)/Au] n multilayer films. J Magn Magn Mater 322:1770–1774

    ADS  Google Scholar 

  48. Yuan FT, Chen SK, Liao WM et al (2006) Very high coercivities of top-layer diffusion Au/FePt thin films. J Magn Magn Mater 304:e109–e111

    Google Scholar 

  49. Yuan FT, Liu SH, Liao WM et al (2012) Ordering transformation of FePt thin films by initial stress/strain control. IEEE Trans Magn 48:1139–1142

    ADS  Google Scholar 

  50. Zhang WY, Shima H, Takano F et al (2009) Enhancement in ordering of Fe 50 Pt 50 film caused by Cr and Cu additives. J Appl Phys 106:033907

    ADS  Google Scholar 

  51. Zhang L, Takahashi YK, Perumal A et al (2010) L10-ordered high coercivity (FePt) Ag–C granular thin films for perpendicular recording. J Magn Magn Mater 322:2658–2664

    ADS  Google Scholar 

  52. Zhang AM, Chen ZX, Zou WQ et al (2012) Effects of substrate on structure and the magnetic properties of (001)-textured FePt films grown at low temperature. J Appl Phys 111:07A704

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the German Academic Exchange Service (DAAD) in the frame of Leonard Euler scholarship program (Grant ID 55576194, Grant ID 57042790, Grant ID 57198300, Grant ID 57291435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo Makushko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makushko, P., Shamis, M., Verbytska, T., Sidorenko, S., Makogon, I. (2020). Effect of Au Layers on A1→L10 Phase Transition and Magnetic Properties of FePt Thin Films. In: Kaidatzis, A., Sidorenko, S., Vladymyrskyi, I., Niarchos, D. (eds) Modern Magnetic and Spintronic Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2034-0_5

Download citation

Publish with us

Policies and ethics