Skip to main content

L10 Ordered Thin Films for Spintronic and Permanent Magnet Applications

Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Materials with strong perpendicular magnetic anisotropy (PMA) are fundamentally appealing and also relevant for numerous applications especially considering their practical relevance for the enhancement of the energy product for thin film based permanent magnets and realization of energy efficient and miniaturized spintronic devices. In contrast to materials exhibiting PMA due to surface anisotropy, these applications would benefit from thin films where PMA stems from a strong uniaxial magnetocrystalline anisotropy (Ku). In this regard, magnetic thin films with chemically ordered L10 structure, representing alternation of A and B atomic planes along the c direction, are considered as most promising due to the high Ku values and finely tunable magnetic properties. Typical representatives of L10 structures are ordered binary phases, e.g. FePt, FePd, MnAl, MnGa, or NiFe. In the case when the c axes of the L10 structure is normal to the film plane, remarkably strong PMA can be achieved. Another important property of L10 structures is their thermodynamic stability providing resistance of corresponding devices against thermal processing. Here, we will review the application prospects of L10 ordered magnetic thin films for spintronic and permanent magnet technologies.

Keywords

  • Thin films
  • Permanent magnet
  • Spintronic
  • MTJ
  • MRAM

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.everspin.com/spin-transfer-torque-mram-products

References

  1. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353

    ADS  Google Scholar 

  2. Bhatti S, Sbiaa R, Hirohata A et al (2017) Spintronics based random access memory: a review. Mater Today 20:530–548

    Google Scholar 

  3. Calvayrac F, Bajorek A, Randrianantoandro N (2018) Mechanical alloying and theoretical studies of MnAl (C) magnets. J Magn Magn Mater 462:96–104

    ADS  Google Scholar 

  4. Choi HS, Kang SY, Cho SJ et al (2014) Spin nano–oscillator–based wireless communication. Sci Rep 4:1–7

    Google Scholar 

  5. Chen J, Sun C, Chow GM (2008) A review of L10 FePt films for high-density magnetic recording. Int J Prod Dev 5:238

    Google Scholar 

  6. Crisan O, Vasiliu F, Crisan AD (2019) Structure and magnetic properties of highly coercive L10 nanocomposite FeMnPt thin films. Mater Charact 152:245–252

    Google Scholar 

  7. Cheng X, Boone CT, Zhu J et al (2010) Nonadiabatic stochastic resonance of a nanomagnet excited by spin torque. Phys Rev Lett 105:047202

    ADS  Google Scholar 

  8. Dang R, Ma X, Liu J et al (2017) The fabrication and characterization of MnAl/FeCo composite thin films with enhanced maximum energy products. Mater Lett 197:8–11

    Google Scholar 

  9. Devolder T, Tulapurkar A, Yagami K et al (2005) Ultra-fast magnetization reversal in magnetic nano-pillars by spin-polarized current. J Magn Magn Mater 286:77–82

    ADS  Google Scholar 

  10. Diao Z, Apalkov D, Pakala M et al (2005) Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlO x barriers. Appl Phys Lett 87:232502

    ADS  Google Scholar 

  11. Endoh T, Honjo H (2018) A recent progress of spintronics devices for integrated circuit applications. J Low Power Electron Appl 8:44

    Google Scholar 

  12. Fang B, Carpentieri M, Hao X et al (2016) Giant spin-torque diode sensitivity in the absence of bias magnetic field. Nat Commun 7:1–7

    Google Scholar 

  13. Fang H, Kontos S, Ångström J et al (2016) Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets. J Solid State Chem 237:300–306

    ADS  Google Scholar 

  14. Fang H, Cedervall J, Casado FJM et al (2017) Insights into formation and stability of τ-MnAlZx (Z= C and B). J Alloys Compd 692:198–203

    Google Scholar 

  15. Fang B, Carpentieri M, Louis S et al (2019) Experimental demonstration of spintronic broadband microwave detectors and their capability for powering nanodevices. Phys Rev Appl 11:014022

    ADS  Google Scholar 

  16. Feng JN, Liu W, Gong WJ et al (2017) Magnetic properties and coercivity of MnGa films deposited on different substrates. J Mat Sci Tech 33:291–294

    Google Scholar 

  17. Fischer GA, Rudee ML (2000) Effect of magnetic annealing on the τ-phase of MnAl thin films. J Magn Magn Mater 213:335–339

    ADS  Google Scholar 

  18. Fullerton EE, Jiang JS, Grimsditch M et al (1998) Exchange-spring behavior in epitaxial hard/soft magnetic bilayers. Phys Rev B 58:12193

    ADS  Google Scholar 

  19. Gavrea R, Hirian R, Mican S et al (2017) Structural, electronic and magnetic properties of the Mn54− xAl46Tix (x= 2; 4) alloys. Intermetallic 82:101–106

    Google Scholar 

  20. Georges B, Grollier J, Cros V et al (2008) Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: an analytical study. Appl Phys Lett 92:232504

    ADS  Google Scholar 

  21. Giannopoulos G, Reichel L, Markou A et al (2015) Optimization of L10 FePt/Fe45Co55 thin films for rare earth free permanent magnet applications. J Appl Phys 117:223909

    ADS  Google Scholar 

  22. Herzer G (1990) Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans Magn 26:1397–1402

    ADS  Google Scholar 

  23. Hou-Fang L, Ali SS, Xiu-Feng H (2014) Perpendicular magnetic tunnel junction and its application in magnetic random access memory. Chin Phys B 23:077501

    ADS  Google Scholar 

  24. Houssameddine D, Florez SH, Katine JA et al (2008) Spin transfer induced coherent microwave emission with large power from nanoscale MgO tunnel junctions. Appl Phys Lett 93:022505

    ADS  Google Scholar 

  25. Huang EY, Kryder MH (2015) Fabrication of MnAl thin films with perpendicular anisotropy on Si substrates. J Appl Phys 117:17E314

    Google Scholar 

  26. Huai Y, Pakala M, Diao Z et al (2006) Spin-transfer switching in MgO magnetic tunnel junction nanostructures. J Magn Magn Mater 304:88–92

    ADS  Google Scholar 

  27. Huang EY, Kryder HM (2015) L10-ordered MnAl thin films with high perpendicular magnetic anisotropy using tin underlayers on Si substrates. Paper presented at the INTERMAG 2015 – IEEE international magnetics conference, Beijing, China, 11–15 May 2015

    Google Scholar 

  28. Ikeda S, Hayakawa J, Ashizawa Y et al (2008) Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in Co Fe B∕ Mg O∕ Co Fe B pseudo-spin-valves annealed at high temperature. Appl Phys Lett 93:082508

    ADS  Google Scholar 

  29. Inami N, Kim G, Hiratsuka T et al (2010) Structural, magnetic, and magnetotransport properties of FePt/MgO/CoPt perpendicularly magnetized tunnel junctions. J Phys Conf Ser 200:052008

    Google Scholar 

  30. Jian H, Skokov KP, Gutfleisch O (2015) Microstructure and magnetic properties of Mn–Al–C alloy powders prepared by ball milling. J Alloys Compd 622:524–528

    Google Scholar 

  31. Kaka S, Pufall MR, Rippard WH et al (2005) Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437:389–392

    ADS  Google Scholar 

  32. Kamino K, Kawaguchi T, Nagakura M (1996) Magnetic properties of MnAl system alloys. IEEE Trans Magn 2:506–510

    ADS  Google Scholar 

  33. Katine JA, Fullerton EE (2008) Device implications of spin-transfer torques. J Magn Magn Mater 320:1217–1226

    ADS  Google Scholar 

  34. Khalili Amiri P, Zeng ZM, Langer J et al (2011) Switching current reduction using perpendicular anisotropy in CoFeB–MgO magnetic tunnel junctions. Appl Phys Lett 98:112507

    ADS  Google Scholar 

  35. Kim G, Sakuraba Y, Oogane M et al (2008) Tunneling magnetoresistance of magnetic tunnel junctions using perpendicular magnetization L 1 0-Co Pt electrodes. Appl Phys Lett 92:172502

    ADS  Google Scholar 

  36. Kiselev SI, Sankey JC, Krivorotov IN et al (2003) Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425:380–383

    ADS  Google Scholar 

  37. Kneller EF, Hawig R (1991) The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans Magn 27:3588–3560

    ADS  Google Scholar 

  38. Kontos S, Fang H, Li J et al (2019) Measured and calculated properties of B-doped τ-phase MnAl–A rare earth free permanent magnet. J Magn Magn Mater 474:591–598

    ADS  Google Scholar 

  39. Krivorotov IN, Emley NC, Sankey JC et al (2005) Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307:228–231

    ADS  Google Scholar 

  40. Krone P, Makarov D, Schrefl T et al (2010) Exchange coupled composite bit patterned media. Appl Phys Lett 97:082501

    ADS  Google Scholar 

  41. Krone P, Makarov D, Schrefl T et al (2011) Correlation of magnetic anisotropy distributions in layered exchange coupled composite bit patterned media. J Appl Phys 109:103901

    ADS  Google Scholar 

  42. Kubota T, Ma Q, Mizukami S et al (2012) Dependence of tunnel magnetoresistance effect on Fe thickness of perpendicularly magnetized L10-Mn62Ga38/Fe/MgO/CoFe junctions. Appl Phys Exp 5:043003

    ADS  Google Scholar 

  43. Kugler Z, Grote JP, Drewello V et al (2012) Co/Pt multilayer-based magnetic tunnel junctions with perpendicular magnetic anisotropy. J Appl Phys 111:07C703

    Google Scholar 

  44. Kurt H, Rode K, Venkatesan M et al (2011) High spin polarization in epitaxial films of ferrimagnetic Mn 3 Ga. Phys Rev B 83:020405

    ADS  Google Scholar 

  45. Laenens B, Almeida FM, Planckaert N et al (2009) Interplay between structural and magnetic properties of L 1 0-FePt (001) thin films directly grown on MgO (001). J Appl Phys 105:073913

    ADS  Google Scholar 

  46. Liu X, Morisako A (2008) Soft magnetic properties of FeCo films with high saturation magnetization. J Appl Phys 103:07E726

    Google Scholar 

  47. Liu Y, George TA, Skomski R et al (2011) Aligned and exchange-coupled FePt-based films. Appl Phys Lett 99:172504

    ADS  Google Scholar 

  48. Liu Y, Sellmyer DJ (2016) Exchange-coupling behavior in nanostructured FePt/Fe bilayer films. AIP Adv 6:056010

    ADS  Google Scholar 

  49. Lodder JC, Nguyen LT (2005) FePt thin films: fundamentals and applications. In: Encyclopedia of materials: science and technology. Elsevier, pp 1–10

    Google Scholar 

  50. Louis S, Sulymenko O, Tiberkevich V et al (2018) Ultra-fast wide band spectrum analyzer based on a rapidly tuned spin-torque nano-oscillator. Appl Phys Lett 113:112401

    ADS  Google Scholar 

  51. Ma QL, Kubota T, Mizukami S et al (2012) Magnetoresistance effect in L 10-MnGa/MgO/CoFeB perpendicular magnetic tunnel junctions with Co interlayer. Appl Phys Lett 101:032402

    ADS  Google Scholar 

  52. Makarov D, Lee J, Brombacher C et al (2010) Perpendicular FePt-based exchange-coupled composite media. Appl Phys Lett 96:062501

    ADS  Google Scholar 

  53. Makarov A, Windbacher T, Sverdlov V et al (2016) CMOS-compatible spintronic devices: a review. Semicond Sci Technol 31:113006

    ADS  Google Scholar 

  54. Mangin S, Ravelosona D, Katine JA et al (2006) Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat Mater 5:210–215

    ADS  Google Scholar 

  55. Mao S, Lu J, Zhao X et al (2017) MnGa-based fully perpendicular magnetic tunnel junctions with ultrathin Co 2 MnSi interlayers. Sci Rep 7:1–7

    Google Scholar 

  56. Mao S, Lu J, Wang H et al (2019) Observation of tunneling magnetoresistance effect in L10-MnAl/MgO/Co2MnSi/MnAl perpendicular magnetic tunnel junctions. J Phys D Appl Phys 52:405002

    ADS  Google Scholar 

  57. Matsumoto R, Chanthbouala A, Grollier J et al (2011) Spin-torque diode measurements of MgO-based magnetic tunnel junctions with asymmetric electrodes. Appl Phys Exp 4:063001

    ADS  Google Scholar 

  58. McCallum RW, Lewis LH, Skomski R et al (2014) Practical aspects of modern and future permanent magnets. Annu Rev Mater Res 44:451–477

    ADS  Google Scholar 

  59. Mican S, Benea D, Hirian R et al (2016) M. Structural, electronic and magnetic properties of the Mn50Al46Ni4 alloy. J Magn Magn Mater 401:841–847

    ADS  Google Scholar 

  60. Mitani S (2011) Spin-transfer magnetization switching in ordered alloy-based nanopillar devices. J Phys D Appl Phys 44:384003

    ADS  Google Scholar 

  61. Moriyama T, Mitani S, Seki T et al (2004) Magnetic tunnel junctions with L1 0-ordered FePt alloy electrodes. J Appl Phys 95:6789–6791

    ADS  Google Scholar 

  62. Mohapatra J, Liu JP (2018) Rare-Earth-free permanent magnets: the past and future. In: Handbook of magnetic materials, vol 27. Elsevier, pp 1–57

    Google Scholar 

  63. Mizukami S, Kubota T, Wu F et al (2012) Composition dependence of magnetic properties in perpendicularly magnetized epitaxial thin films of Mn-Ga alloys. Phys Rev B 85:014416

    ADS  Google Scholar 

  64. Mizukami S, Kubota T, Iihama S et al (2014) Magnetization dynamics for L 10 MnGa/Fe exchange coupled bilayers. J Appl Phys 115:17C119

    Google Scholar 

  65. Mizukami S, Sugihara A, Iihama S et al (2016) Laser-induced THz magnetization precession for a tetragonal Heusler-like nearly compensated ferrimagnet. Appl Phys Lett 108:012404

    ADS  Google Scholar 

  66. Naganuma H, Kim G, Kawada Y et al (2015) Electrical detection of millimeter-waves by magnetic tunnel junctions using perpendicular magnetized L 10-FePd free layer. Nano Lett 15:623–628

    ADS  Google Scholar 

  67. Navío C, Villanueva M, Céspedes E et al (2018) Ultrathin films of L10-MnAl on GaAs (001): a hard magnetic MnAl layer onto a soft Mn-Ga-As-Al interface. APL Mater 6:101109

    ADS  Google Scholar 

  68. Nie SH, Zhu LJ, Lu J et al (2013) Perpendicularly magnetized τ-MnAl (001) thin films epitaxied on GaAs. Appl Phys Lett 102:152405

    ADS  Google Scholar 

  69. Nozaki T, Yamamoto T, Miwa S et al (2019) Recent Progress in the voltage-controlled magnetic anisotropy effect and the challenges faced in developing voltage-torque MRAM. Micromachines 10:327

    Google Scholar 

  70. Ono A, Suzuki KZ, Ranjbar R et al (2017) Ultrathin films of polycrystalline MnGa alloy with perpendicular magnetic anisotropy. Appl Phys Exp 10:023005

    ADS  Google Scholar 

  71. Oogane M, Watanabe K, Saruyama H et al (2017) L10-ordered MnAl thin films with high perpendicular magnetic anisotropy. Japn J Appl Phys 56:0802A2

    Google Scholar 

  72. Øygarden V, Rial J, Bollero A et al (2019) Phase-pure τ-MnAlC produced by mechanical alloying and a one-step annealing route. J Alloys Compd 779:776–783

    Google Scholar 

  73. Park JH, Hong YK, Bae S et al (2010) Saturation magnetization and crystalline anisotropy calculations for MnAl permanent magnet. J Appl Phys 107:09A731

    Google Scholar 

  74. Peng SZ, Zhang Y, Wang M X et al (2005) in Wiley Encyclopedia of electrical and electronics engineering, pp 1–16

    Google Scholar 

  75. Prokopenko O, Bankowski E, Meitzler T et al (2011) A spin-torque nano-oscillator as a microwave signal source. IEEE Magn Lett 2:3000104–3000104

    Google Scholar 

  76. Prokopenko OV, Krivorotov IN, Bankowski E et al (2012) Spin-torque microwave detector with out-of-plane precessing magnetic moment. J Appl Phys 111:123904

    ADS  Google Scholar 

  77. Prokopenko OV, Krivorotov IN, Bankowski EN et al (2013) Hysteresis regime in the operation of a dual-free-layer spin-torque nano-oscillator with out-of-plane counter-precessing magnetic moments. J Appl Phys 114:173904

    ADS  Google Scholar 

  78. Prokopenko OV, Krivorotov IN, Meitzler TJ et al (2013) Spin-torque microwave detectors. Magnonics. Springer, Berlin/Heidelberg, pp 143–161

    Google Scholar 

  79. Prokopenko OV, Slavin AN (2015) Microwave detectors based on the spin-torque diode effect. Low Temp Phys 41:353–360

    ADS  Google Scholar 

  80. Rippard WH, Deac AM, Pufall MR et al (2010) Spin-transfer dynamics in spin valves with out-of-plane magnetized CoNi free layers. Phys Rev B 81:014426

    ADS  Google Scholar 

  81. Sabet S, Moradabadi A, Gorji S et al (2019) Correlation of interface structure with magnetic exchange in a hard/soft magnetic model nanostructure. Phys Rev Appl 11:054078

    ADS  Google Scholar 

  82. Sakuma A (1994) Electronic structure and magnetocrystalline anisotropy energy of MnAl. J Phys Soc Jpn 63:1422–1428

    ADS  Google Scholar 

  83. Sanches F, Tiberkevich V, Guslienko KY et al (2014) Current-driven gyrotropic mode of a magnetic vortex as a nonisochronous auto-oscillator. Phys Rev B 89:140410

    ADS  Google Scholar 

  84. Sankey JC, Cui YT, Sun JZ et al (2008) Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nat Phys 4:67–71

    Google Scholar 

  85. Saruyama H, Oogane M, Kurimoto Y et al (2013) Fabrication of L10-ordered MnAl films for observation of tunnel magnetoresistance effect. Jpn J Appl Phys 52:063003

    ADS  Google Scholar 

  86. Sato T, Ohsuna T, Kaneko Y (2016) Enhanced saturation magnetization in perpendicular L 10–MnAl films upon low substitution of Mn by 3 d transition metals. J Appl Phys 120:243903

    ADS  Google Scholar 

  87. Sato H, Ikeda S, Ohno H (2017) Magnetic tunnel junctions with perpendicular easy axis at junction diameter of less than 20 nm. Jpn J Appl Phys 56:0802A6

    Google Scholar 

  88. Sato K, Takahashi Y, Makuta H et al (2018) Dependence of thickness of Fe buffer layer on magnetic properties for Mn2. 6Ga thin films. Trans Magn Soc Jpn 2:48–51

    Google Scholar 

  89. Sbiaa R, Piramanayagam SN (2017) Recent developments in spin transfer torque MRAM. Phys Stat Sol Rapid Res Lett 11:1700163

    ADS  Google Scholar 

  90. Silva TJ, Rippard WH (2008) Developments in nano-oscillators based upon spin-transfer point-contact devices. J Magn Magn Mater 320:1260–1271

    ADS  Google Scholar 

  91. Sim CH, Moneck M, Liew T et al (2012) Frequency-tunable perpendicular spin torque oscillator. J Appl Phys 111:07C914

    Google Scholar 

  92. Skomski R, Manchanda P, Kumar P et al (2013) Predicting the future of permanent-magnet materials. IEEE Trans Magn 49:3215–3220

    ADS  Google Scholar 

  93. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1

    ADS  Google Scholar 

  94. Su KP, Chen XX, Wang HO et al (2016) Effect of milling on the structure and magnetic properties in Mn54Al46 flakes prepared by surfactant-assisted ball milling. Mater Charact 114:263–266

    Google Scholar 

  95. Suess D, Schrefl T, Fähler S et al (2005) Exchange spring media for perpendicular recording. Appl Phys Lett 87:012504

    ADS  Google Scholar 

  96. Süss D (2006) Multilayer exchange spring media for magnetic recording. Appl Phys Lett 89:113105

    ADS  Google Scholar 

  97. Suzuki KZ, Ranjbar R, Okabayashi J et al (2016) Perpendicular magnetic tunnel junction with a strained Mn-based nanolayer. Sci Rep 6:30249

    ADS  Google Scholar 

  98. Suzuki KZ, Miura Y, Ranjbar R et al (2018) Perpendicular magnetic tunnel junctions with Mn-modified ultrathin MnGa layer. Appl Phys Lett 112:062402

    ADS  Google Scholar 

  99. Takahashi Y, Makuta H, Shima T et al (2017) Fabrication and magnetic properties of L10-MnGa highly oriented thin films. Trans Magn Soc Jpn Special Issues 1:30–33

    Google Scholar 

  100. Takemura R, Kawahara T, Miura K et al (2010) A 32-Mb SPRAM with 2T1R memory cell, localized bi-directional write driver and1’/0’dual-array equalized reference scheme. IEEE J Solid State Circuits 45(4):869–879

    ADS  Google Scholar 

  101. Taniguchi T, Arai H, Tsunegi S et al (2013) Critical field of spin torque oscillator with perpendicularly magnetized free layer. Appl Phys Exp 6:123003

    ADS  Google Scholar 

  102. Tulapurkar AA, Suzuki Y, Fukushima A et al (2005) Spin-torque diode effect in magnetic tunnel junctions. Nature 438:339–342

    ADS  Google Scholar 

  103. Vashisht G, Goyal R, Bala M et al (2018) Studies of exchange coupling in FeCo/L1 0-FePt bilayer thin films. IEEE Trans Magn 55:1–5

    Google Scholar 

  104. Wang K, Lu E, Knepper JW et al (2011) Structural controlled magnetic anisotropy in Heusler L 1 0− MnGa epitaxial thin films. Appl Phys Lett 98:162507

    ADS  Google Scholar 

  105. Watanabe K, Oogane M, Ando Y (2017) Cobalt substituted L10-MnAl thin films with large perpendicular magnetic anisotropy. Jpn J Appl Phys 56:0802B1

    Google Scholar 

  106. Weller D, Parker G, Mosendz O, Lyberatos A et al (2016) FePt heat assisted magnetic recording media. J Vacuum Sci Technol B Nanotechnol Microelectron 34:060801

    Google Scholar 

  107. Wen ZC, Wei HX, Han XF (2007) Patterned nanoring magnetic tunnel junctions. Appl Phys Lett 91:122511

    ADS  Google Scholar 

  108. Wurmehl S, Kandpal HC, Fecher GH et al (2006) Valence electron rules for prediction of half-metallic compensated-ferrimagnetic behaviour of Heusler compounds with complete spin polarization. J Phys Condens Matter 18:6171

    ADS  Google Scholar 

  109. Xiang Z, Song Y, Deng B et al (2019) Enhanced formation and improved thermal stability of ferromagnetic τ phase in nanocrystalline Mn55Al45 alloys by Co addition. J Alloys Compd 783:416–422

    Google Scholar 

  110. Yakushiji K, Saruya T, Kubota H et al (2010) Ultrathin co/Pt and co/Pd superlattice films for MgO-based perpendicular magnetic tunnel junctions. Appl Phys Lett 97:232508

    ADS  Google Scholar 

  111. Yan ZC, Huang Y, Zhang Y et al (2005) Magnetic and structural properties of MnAl/ag granular thin films with L10 structure. Scr Mater 53:463–468

    Google Scholar 

  112. Yang G, Li DL, Wang SG et al (2015) Effect of interfacial structures on spin dependent tunneling in epitaxial L 10-FePt/MgO/FePt perpendicular magnetic tunnel junctions. J Appl Phys 117:083904

    ADS  Google Scholar 

  113. Yang MS, Fang L, Chi YQ (2018) Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ. Chin Phys B 27:098504

    ADS  Google Scholar 

  114. You J, Guo Y (2018) Plasma enhanced atomic layer deposition of Co thin film on τ-MnAl for effective magnetic exchange coupling and enhanced energy products. J Alloys Compd 758:116–121

    Google Scholar 

  115. Yoshikawa M, Kitagawa E, Nagase et al (2008) Tunnel magnetoresistance over 100% in MgO-based magnetic tunnel junction films with perpendicular magnetic L10-FePt electrodes. IEEE Trans Magn 44:2573–2576

    ADS  Google Scholar 

  116. Zhang X, Tao LL, Zhang J et al (2017) First-principles study of MnAl for its application in MgO-based perpendicular magnetic tunnel junctions. Appl Phys Lett 110:252403

    ADS  Google Scholar 

  117. Zhao XP, Lu J, Mao SW et al (2017) L10-MnGa based magnetic tunnel junction for high magnetic field sensor. J Phys D Appl Phys 50:285002

    Google Scholar 

  118. Zhong H, Wen Y, Zhao Y et al (2019) Ten states of nonvolatile memory through engineering ferromagnetic remanent magnetization. Adv Funct Mater 29:1806460

    Google Scholar 

  119. Zhu L, Nie S, Meng K et al (2012) Multifunctional L10-Mn1. 5Ga films with ultrahigh coercivity, Giant perpendicular Magnetocrystalline anisotropy and large magnetic energy product. Adv Mater 24:4547–4551

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arsen Hafarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hafarov, A., Prokopenko, O., Sidorenko, S., Makarov, D., Vladymyrskyi, I. (2020). L10 Ordered Thin Films for Spintronic and Permanent Magnet Applications. In: Kaidatzis, A., Sidorenko, S., Vladymyrskyi, I., Niarchos, D. (eds) Modern Magnetic and Spintronic Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2034-0_4

Download citation