Skip to main content

Nanopatterned Thin Films with Perpendicular Magnetic Anisotropy – Structure and Magnetism

  • 383 Accesses

Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

We describe two unconventional kinds of thin films patterning – nanosphere lithography combined with plasma etching and direct laser interference lithography. We used both techniques to create nanostructures in thin films with perpendicular magnetic anisotropy. In the first discussed case we fabricated the holes in magnetic material; in the second we generated the linear structures. We studied the magnetic properties, magnetic reversal, and the evolution of the domain pattern for matrices of Co/Pd antidots. Finally, we applied direct interference lithography to induce the transformation from disordered to ordered phase, which should result in perpendicular magnetic anisotropy of linear structures of FePt alloy and Fe/Pd multilayers.

Keywords

  • Perpendicular magnetic anisotropy
  • FePt
  • FePd
  • CoPd
  • Nanosphere lithography patterning
  • Direct laser interference patterning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-024-2034-0_3
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-94-024-2034-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10
Fig. 3.11
Fig. 3.12
Fig. 3.13
Fig. 3.14
Fig. 3.15
Fig. 3.16

References

  1. Sellmyer D, Skomski R (2006) Advanced magnetic nanostructures. Springer, New York

    Google Scholar 

  2. Heinrich B, Bland JAC (2005) Ultrathin magnetic structures IV applications of nanomagnetism, 1st edn. Springer, Berlin/Heidelberg

    Google Scholar 

  3. Bland JAC, Heinrich B (2005) Ultrathin magnetic structures III fundamentals of nanomagnetism. Springer, Berlin/Heidelberg

    Google Scholar 

  4. Hu B, Amos N, Tian Y et al (2011) J Appl Phys 109:034314

    ADS  Google Scholar 

  5. Baltz V, Marty A, Rodmacq B et al (2007) Phys Rev B 75:014406

    ADS  Google Scholar 

  6. Ohtake M, Ouchi S, Kirino F (2012) J Appl Phys 111:07A708

    Google Scholar 

  7. Grobis M, Schulze C, Faustini M et al (2011) Appl Phys Lett 98:2011

    Google Scholar 

  8. Rahman MT, Shams NN, Wu YC et al (2007) Appl Phys Lett 91:132505

    ADS  Google Scholar 

  9. Swiatkowska-Warkocka Z, Pyatenko A, Krok F et al (2015) Sci Rep 5:9849

    Google Scholar 

  10. Mátéfi-Tempfli S, Mátéfi-Tempfli M, Vlad A et al (2009) J Mater Sci Mater Electron 20:249

    Google Scholar 

  11. Kac M, Zarzycki A, Kac S (2016) Mater Sci Eng B 211:75

    Google Scholar 

  12. Kanchibotla B, Pramanik S, Bandyopadhyay S (2007) In: Lyshevski SE (ed) In Nano and Molecuar electronics handbook. CRC Press, Boca Raton

    Google Scholar 

  13. Escrig J, Daub M, Landeros P et al (2007) Nanotechnology 18:445706

    Google Scholar 

  14. Adeyeye AO, Singh N (2008) J Phys D Appl Phys 41:153001

    ADS  Google Scholar 

  15. Iihama S, Khan M, Naganuma H et al (2015) J Magn Society Japan 39:57

    Google Scholar 

  16. Yabuhara O, Ohtake M, Tobari K et al (2011) Thin Solid Films 519:8359

    ADS  Google Scholar 

  17. Thiele J, Folks L, Toney MF et al (1998) J Appl Phys 84:5686

    ADS  Google Scholar 

  18. Lu Z, Walock MJ, Leclair P et al (2009) J Vac Sci Technol A 27:1067

    Google Scholar 

  19. Barton CW, Thomson T (2016) J Appl Phys 118:063901

    ADS  Google Scholar 

  20. Chowdhury P, Kulkarni PD, Krishnan M et al (2012) J Appl Phys 112:023912

    ADS  Google Scholar 

  21. den Broeder FJA, Hoving W, Bloemen PJH (1991) J Magn Magn Mater 93:562

    ADS  Google Scholar 

  22. Engel BN, England CD, van Leeuwen RA (1991) Phys Rev Lett 67:1910

    ADS  Google Scholar 

  23. Shaw JM, Nembach HT, Silva TJ et al (2009) Phys Rev B 80:184419

    ADS  Google Scholar 

  24. Barnes JR, O’Shea SJ, Welland ME et al (1994) J Appl Phys 76:2974

    ADS  Google Scholar 

  25. Shaw JM, Rippard WH, Russek SE et al (2007) J Appl Phys 101:023909

    ADS  Google Scholar 

  26. Nemoto H, Hosoe Y (2005) J Appl Phys 97:10J109

    Google Scholar 

  27. Gottwald M, Lee K, Kan JJ et al (2013) Appl Phys Lett 102:052405

    ADS  Google Scholar 

  28. Tadisina ZR, Natarajarathinam A, Clark BD et al (2010) J Appl Phys 107:09C703

    Google Scholar 

  29. Sbiaa R, Ranjbar M, Åkerman J (2015) J Appl Phys 117:17C102

    Google Scholar 

  30. Rozatian ASH, Marrows CH, Hase TPA et al (2005) J Phys Condens Matter 17:3759

    ADS  Google Scholar 

  31. Kawaji J, Asahi T, Onoue T et al (2002) J Magn Magn Mater 251:220

    ADS  Google Scholar 

  32. Kim S, Lee S, Kim J et al (2011) J Appl Phys 109:109

    Google Scholar 

  33. Onoue T, Asahi T, Kuramochi K et al (2001) J Magn Magn Mater 235:40

    ADS  Google Scholar 

  34. Kim SK, Chernov VA, Koo YM (1997) J Magn Magn Mater 170:L7

    Google Scholar 

  35. Kim S, Koo Y, Chernov V (2000) Phys Rev B 62:3025

    ADS  Google Scholar 

  36. Kim SK, Shin SC (2001) J Appl Phys 89:3055

    ADS  Google Scholar 

  37. Carrey J, Berkowitz AE, Egelhoff WE (2003) Appl Phys Lett 83:5259

    ADS  Google Scholar 

  38. Johnson MT, Bloemen PJH, den Broeder FJA (1996) Reports Prog Phys 59:1409

    ADS  Google Scholar 

  39. Carcia PF (1998) J Appl Phys 63:5066

    ADS  Google Scholar 

  40. Hiroshi T (1993) Jpn J Appl Phys 32:L1328

    Google Scholar 

  41. Hashimoto S, Ochiai Y, Aso K (1989) J Appl Phys 66:4909

    ADS  Google Scholar 

  42. Kohlhepp JT, Strijkers GJ, Wieldraaijer H et al (2002) Phys Stat Solidi A 189:701

    ADS  Google Scholar 

  43. Pearson WB (1958) A handbook of lattice Spacings and structures of metals and alloys. Pergamon Press, London

    Google Scholar 

  44. Aitchison PR, Chapman JN, Gehanno V et al (2001) J Magn Magn Mat 223:138

    ADS  Google Scholar 

  45. Carbucicchio M, Ciprian R, Palombarini G (2010) J Magn Magn Mat 322:1307

    ADS  Google Scholar 

  46. Weil DH, Yao YD (2009) Appl Phys Lett 95:172503

    ADS  Google Scholar 

  47. Lukaszew RA, Cebollada A, Clavero C (2006) Physica B 384:15

    ADS  Google Scholar 

  48. Jeong S, Hsu YN, Laughlin DE et al (2001) IEEE Trans Magne 37:1299

    ADS  Google Scholar 

  49. Polit A, Makarov D, Brombacher C et al (2015) J Magn Magn Mat 381:316

    ADS  Google Scholar 

  50. Kitakami O, Shimada Y, Oikawa K et al (2001) Appl Phys Lett 78:1104

    ADS  Google Scholar 

  51. Albrecht M, Brombacher C (2013) Phys Stat Solidi A 210:1272

    ADS  Google Scholar 

  52. Bourgognon C, Tatarenko S, Cibert J et al (2000) App Phys Lett 76:1455

    ADS  Google Scholar 

  53. Yang E, Laughlin DE, Zhu JG (2010) IEEE Trans Magn 46:2446

    ADS  Google Scholar 

  54. Yang E, Laughlin DE (2008) J Appl Phys 104:023904

    ADS  Google Scholar 

  55. Xu YF, Chen JS, Wang JP (2002) Appl Phys Lett 80:3325

    ADS  Google Scholar 

  56. Unal AA, Valencia S, Radu F et al (2016) Phys Rev Appl 5:064007

    ADS  Google Scholar 

  57. Kruglyak VV, Demokritov SO, Grundler D (2010) J Phys D Appl Phys 43:264001

    ADS  Google Scholar 

  58. Krawczyk M, Grundler D (2014) J Phys: Cond Mat 26:123202

    Google Scholar 

  59. Krupinski M, Mitin D, Zarzycki A et al (2017) Nanotechnology 28:085302

    ADS  Google Scholar 

  60. Krupinski M, Sobieszczyk P, Zieliński P et al (2019) Sci Rep 9:13276

    ADS  Google Scholar 

  61. Fischer UC, Zingsheim HP (1981) J Vac Sci Technol 19:881

    ADS  Google Scholar 

  62. Deckman HW, Dunsmuir JH (1982) Appl Phys Lett 41:377

    ADS  Google Scholar 

  63. Haynes CL, van Duyne RP (2001) J Phys Chem B 105:5599

    Google Scholar 

  64. Zhang X, Whitney AV, Zhao J et al (2006) J Nanosci Nanotech 6:1920

    Google Scholar 

  65. Zhao X, Wen J, Li L et al (2019) J Appl Phys 126:141101

    ADS  Google Scholar 

  66. Ai B, Yu Y, Möhwald H et al (2014) Adv Coll Interf Sci 206:5

    Google Scholar 

  67. Wang H, Levin CS, Halas NJ (2005) J Am Chem Soc 127:14992

    Google Scholar 

  68. Ji D, Li T, Fuchs H (2017) Adv Electron Mater 3:1600348

    Google Scholar 

  69. Akinoglu EM, Morfa AJ, Giersig M (2014) Langmuir 30:12354

    Google Scholar 

  70. Hauet T, Hellwig O, Park SH et al (2011) Appl Phys Lett 98:172506

    ADS  Google Scholar 

  71. Hu G, Thomson T, Rettner CT et al (2005) J Appl Phys 97:10J702

    Google Scholar 

  72. Lau JW, McMichael RD, Chung SH et al (2008) Appl Phys Lett 92:012506

    ADS  Google Scholar 

  73. Sbiaa R, Bilin Z, Ranjbar M et al (2010) J Appl Phys 107:103901

    ADS  Google Scholar 

  74. Mitin D, Grobis M, Albrecht M (2016) Rev Sci Instrum 87:023703

    ADS  Google Scholar 

  75. Lee J, Brombacher C, Fidler J et al (2011) Appl Phys Lett 99:062505

    ADS  Google Scholar 

  76. Grafe J, Weigand M, Trager N et al (2016) Phys Rev B 93:104421

    ADS  Google Scholar 

  77. Kim DY, Tripathy SK, Ki L et al (1995) Appl Phys Lett 66:1166

    ADS  Google Scholar 

  78. Heintze M, Santos PV, Nebel CE et al (1994) Appl Phys Lett 64:3148

    ADS  Google Scholar 

  79. Phillips HM, Callahan DL, Sauerbrey R et al (1991) Appl Phys Lett 58:2761

    ADS  Google Scholar 

  80. Ilcisin KJ, Fedosejev R (1987) Appl Opt 26:396

    ADS  Google Scholar 

  81. Kelly MK, Rogg J, Nebel CE (1998) Phys Stat Sol A 166:651

    ADS  Google Scholar 

  82. Nebel CE, Christiansen S, Strunk HP (1998) Phys Stat Sol A 166:667

    ADS  Google Scholar 

  83. Fukumura H, Ujii H, Banjo H et al (1998) Appl Surf Sci 127:761

    ADS  Google Scholar 

  84. Fukumura H, Kohji Y, Nagasawa K et al (1994) J Am Chem Soc 116:10304

    Google Scholar 

  85. Shoji S, Kawata S (2000) Appl Phys Lett 76:2668

    ADS  Google Scholar 

  86. Lorens M, Zabila Y, Krupinski M et al (2012) Acta Physica Pol A 121:543

    Google Scholar 

  87. Lasagni A, Mücklich F (2005) Appl Surf Sci 240:214

    ADS  Google Scholar 

  88. Mücklich F, Lasagni A, Daniel C (2005) Intermetallics 13:437

    Google Scholar 

  89. Lasagni A, Holzapfel C, Weirich T et al (2007) Appl Surf Sci 253:8070

    ADS  Google Scholar 

  90. Daniel C, Mücklich F (2005) Appl Surf Sci 242:140

    ADS  Google Scholar 

  91. Daniel C, Mücklich F, Liu Z (2003) Appl Surf Sci 208:317

    ADS  Google Scholar 

  92. Zabila Y, Perzanowski M, Dobrowolska A et al (2009) Acta Physica Pol A 115:591

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Marszalek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Krupiński, M., Zabila, Y., Marszalek, M. (2020). Nanopatterned Thin Films with Perpendicular Magnetic Anisotropy – Structure and Magnetism. In: Kaidatzis, A., Sidorenko, S., Vladymyrskyi, I., Niarchos, D. (eds) Modern Magnetic and Spintronic Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2034-0_3

Download citation