Skip to main content

Visual Analytics in Machine Training Systems for Effective Decision

Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

The approaches to the formation, development of a formal and mental model based on the use of visual analytics are proposed. It is based on the description of model building technologies. An example of information technology that allows getting a formal model based on the transformation of the mental model through the space of formalized universal forms is given. This allows the model to be used in a different usage and execution environment. Model development is carried out using loops the improvement of the base model or transforming the use of the model from another runtime. An example of equipment and tools for the construction and transformation of models is demonstrated.

Keywords

  • Visual analytics
  • Classification
  • Mental model
  • Formal model
  • Visualization
  • Decision making

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-024-2030-2_25
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-94-024-2030-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 25.1
Fig. 25.2
Fig. 25.3
Fig. 25.4

References

  1. Endert A, Hossain MS, Ramakrishnan N, North C, Fiaux P, Andrews C (2014) The human is the loop: new directions for visual analytics. J Intell Inf Syst 43(3):411–435

    CrossRef  Google Scholar 

  2. Endert A, Ribarsky W, Turkay C, Wong BLW, Nabney I, Díaz Blanco I, Rossi F (2017) The state of the art in integrating machine learning into visual analytics. Comput Graph Forum 36(8):458–486

    CrossRef  Google Scholar 

  3. Thomas J, Cook K (eds) (2005) Illuminating the path: research and development agenda for visual analytics. IEEE-Press, New Jersey, p 455

    Google Scholar 

  4. Pirolli P, Card S (2005) The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proceedings of international conference on intelligence analysis, McLean, vol 6, pp 1–6

    Google Scholar 

  5. Sacha D, Stoffel A, Stoffel F, Kwon Bum Chul K, Ellis G, Keim DA (2014) Knowledge generation model for visual analytics. IEEE Trans Visual Comput Graph 20(12):1604–1613

    CrossRef  Google Scholar 

  6. Lee T, Johnson J, Cheng S (2016) An interactive machine learning framework. Arxiv: abs/1610.05463

    Google Scholar 

  7. Holzinger A, Plass M, Kickmeier-Rust M, Holzinger K, Crisan GC, Pintea CM, Palade V (2019) Interactive machine learning: experimental evidence for the human in the algorithmic loop. Appl Intell 49(7):2401–2414

    CrossRef  Google Scholar 

  8. Kruchinin S, Nagao H, Aono S (2010) Modern aspect of superconductivity: theory of superconductivity. World Scientific, Singapore, p 232

    CrossRef  Google Scholar 

  9. Sugahara M, Kruchinin SP (2001) Controlled not gate based on a two-layer system of the fractional quantum Hall effect. Mod Phys Lett B 15:473–477

    CrossRef  ADS  Google Scholar 

  10. Kruchinin S, Klepikov V, Novikov VE, Kruchinin D (2005) Nonlinear current oscillations in a fractal Josephson junction. Mater Sci 23(4):1009–1013

    Google Scholar 

  11. Sacha D, Kraus M, Keim DA, Chen M (2019) Vis4ml: an ontology for visual analytics assisted machine learning. IEEE Trans Visual Comput Graph 25(1):385–395

    CrossRef  Google Scholar 

  12. Andrienko N, Lammarsch T, Andrienko G, Fuchs G, Keim D, Miksch S, Rind A (2018) Viewing visual analytics as model building. Comput Graph Forum 37(6):275–299

    CrossRef  Google Scholar 

  13. Liu Z, Staskoj T (2010) Mental models, visual reasoning and interaction in information visualization: a top-down perspective. IEEE Trans Visual Comput Graph 16(6):999–1008

    CrossRef  Google Scholar 

  14. Kryvonos IG, Krak IV (2011) Modeling human hand movements, facial expressions, and articulation to synthesize and visualize gesture information. Cybern Syst Anal 47(4):501–505

    CrossRef  Google Scholar 

  15. Kryvonos IG, Krak IV, Barmak OV, Kulias AI (2017) Methods to create systems for the analysis and synthesis of communicative information. Cybern Syst Anal 53(6):847–856

    CrossRef  Google Scholar 

  16. Keim D, Andrienko G, Fekete J-D, Görg C, Kohlhammer J, Melançon G (2008) Visual analytics: definition, process, and challenges. In: Kerren A, Stasko JT, Fekete J-D, North C (eds) Information visualization: human-centered issues and perspectives. Springer, Berlin, pp 154–175

    CrossRef  Google Scholar 

  17. Manziuk EA, Barmak AV, Krak YV, Kasianiuk VS (2018) Definition of information core for documents classification. J Autom Inf Sci 50(4):25–34

    CrossRef  Google Scholar 

  18. Barmak A, Krak Y, Manziuk E, Kasianiuk V (2019) Information technology of separating hyperplanes synthesis for linear classifiers. J Autom Inf Sci 51(5):54–64

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Krak, I., Kruchynin, K., Barmak, O., Manziuk, E., Kruchinin, S.P. (2020). Visual Analytics in Machine Training Systems for Effective Decision. In: Bonča, J., Kruchinin, S. (eds) Advanced Nanomaterials for Detection of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2030-2_25

Download citation