Skip to main content

Continuous and Time-Resolved Cathodoluminescence Studies of Electron Injection Induced Effects in Gallium Nitride

Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The purpose of this study is to experimentally determine the effect of electron injection on the minority carrier lifetime in Gallium Nitride. Earlier studies of electron injection in GaN have provided an indirect proof of lifetime enhancement through the increase of minority carrier diffusion length and the decrease in the cathodoluminescence intensity. These changes in the minority transport properties, caused by electron injection, are brought forth through defect and trap levels in the bandgap. Furthermore, a thorough discussion of the electron injection model and role of these trap levels is presented.

Keywords

  • Electron injection
  • Lifetime
  • Minority carrier transport
  • Gallium nitride

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-024-2021-0_11
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-94-024-2021-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5

References

  1. Flack TJ, Pushpakaran BN, Bayne SB (2016) GaN technology for power electronic applications: a review. J Electron Mater 45(6):2673–2682

    ADS  CrossRef  Google Scholar 

  2. Tsao JY, Chowdhury S, Hollis MA, Jena D, Johnson NM, Jones KA, Kaplar RJ, Rajan S, Van de Walle CG, Bellotti E, Chua CL, Collazo R, Coltrin ME, Cooper JA, Evans KR, Graham S, Grotjohn TA, Heller ER, Higashiwaki M, Islam MS, Juodawlkis PW, Khan MA, Koehler AD, Leach JH, Mishra UK, Nemanich RJ, Pilawa-Podgurski RCN, Shealy JB, Sitar Z, Tadjer MJ, Witulski AF, Wraback M, Simmons JA (2018) Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv Electron Mater 4(1):1600501

    CrossRef  Google Scholar 

  3. Wang J, Mulligan P, Brillson L, Cao LR (2015) Review of using gallium nitride for ionizing radiation detection. Appl Phys Rev 2(3):031102

    CrossRef  Google Scholar 

  4. Kolodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide-from synthesis to application: a review. Materials (Basel) 7(4):2833–2881

    ADS  CrossRef  Google Scholar 

  5. Pearton SJ, Yang J, Cary PH, Ren F, Kim J, Tadjer MJ, Mastro MA (2018) A review of Ga2O3 materials, processing, and devices. Appl Phys Rev 5(1):011301

    CrossRef  Google Scholar 

  6. Reshchikov MA, Morkoç H (2005) Luminescence properties of defects in GaN. J Appl Phys 97(6):061301

    ADS  CrossRef  Google Scholar 

  7. Reshchikov MA, Usikov A, Helava H, Makarov Y, Prozheeva V, Makkonen I, Tuomisto F, Leach JH, Udwary K (2017) Evaluation of the concentration of point defects in GaN. Sci Rep 7(1):9297

    ADS  CrossRef  Google Scholar 

  8. Kamyczek P, Placzek-Popko E, Zielony E, Zytkiewicz Z (2013) Deep levels in GaN studied by deep level transient spectroscopy and Laplace transform deep-level spectroscopy. Mater Sci-Pol 31(4):572–576

    ADS  CrossRef  Google Scholar 

  9. Monemar B (2001) Bound excitons in GaN. J Phys Condens Matter 13(32):7011–7026

    ADS  CrossRef  Google Scholar 

  10. Look DC, Reynolds DC, Hemsky JW, Sizelove JR, Jones RL, Molnar RJ (1997) Defect donor and acceptor in GaN. Phys Rev Lett 79(12):2273–2276

    ADS  CrossRef  Google Scholar 

  11. Boguslawski P, Briggs EL, Bernholc J (1995) Native defects in GaN. Phys Rev B 51(23):17255–17259

    ADS  CrossRef  Google Scholar 

  12. Park JH, Kim DY, Schubert EF, Cho J, Kim JK (2018) Fundamental limitations of wide-bandgap semiconductors for light-emitting diodes. ACS Energy Lett 3(3):655–662

    CrossRef  Google Scholar 

  13. Lopatiuk-Tirpak O, Chernyak L, Mandalapu LJ, Yang Z, Liu JL, Gartsman K, Feldman Y, Dashevsky Z (2006) Influence of electron injection on the photoresponse of ZnO homojunction diodes. Appl Phys Lett 89(14):142114

    ADS  CrossRef  Google Scholar 

  14. Lopatiuk-Tirpak O, Chernyak L, Xiu FX, Liu JL, Jang S, Ren F, Pearton SJ, Gartsman K, Feldman Y, Osinsky A, Chow P (2006) Studies of minority carrier diffusion length increase in p-type ZnO:Sb. J Appl Phys 100(8):086101

    ADS  CrossRef  Google Scholar 

  15. Burdett WC, Lopatiuk O, Osinsky A, Pearton SJ, Chernyak L (2004) The optical signature of electron injection in p-(Al)GaN. Superlattice Microst 34(1–2):55–62

    ADS  Google Scholar 

  16. Chernyak L, Burdett W, Klimov M, Osinsky A (2003) Cathodoluminescence studies of the electron injection-induced effects in GaN. Appl Phys Lett 82(21):3680–3682

    ADS  CrossRef  Google Scholar 

  17. Chernyak L, Schulte A, Osinsky A, Graff J, Schubert EF (2002) Influence of electron injection on performance of GaN photodetectors. Appl Phys Lett 80(6):926–928

    ADS  CrossRef  Google Scholar 

  18. Chernyak L, Osinsky A, Schulte A (2001) Minority carrier transport in GaN and related materials. Solid State Electron 45(9):1687–1702

    ADS  CrossRef  Google Scholar 

  19. Chernyak L, Nootz G, Osinsky A (2001) Enhancement of minority carrier transport in forward biased GaN p-n junction. Electron Lett 37(14):922–923

    ADS  CrossRef  Google Scholar 

  20. Chernyak L, Osinsky A, Fuflyigin V, Schubert EF (2000) Electron beam-induced increase of electron diffusion length in p-type GaN and AlGaN/GaN superlattices. Appl Phys Lett 77(6):875–877

    ADS  CrossRef  Google Scholar 

  21. Leamy HJ (1982) Charge collection scanning electron microscopy. J Appl Phys 53(6):R51–R80

    ADS  CrossRef  Google Scholar 

  22. Ioannou DE, Dimitriadis CA (1982) A SEM-EBIC minority-carrier diffusion-length measurement technique. IEEE Trans Electron Devices 29(3):445–450

    CrossRef  Google Scholar 

  23. Berz F, Kuiken HK (1976) Theory of life time measurements with the scanning electron microscope: steady state. Solid State Electron 19(6):437–455

    ADS  CrossRef  Google Scholar 

  24. Nakamura S, Senoh M, Mukai T (1991) Highly p-typed Mg-doped GaN films grown with GaN buffer layers. Jpn J Appl Phys 30(Part 2, 10A):L1708–L1711

    ADS  CrossRef  Google Scholar 

  25. Burdett W, Osinsky A, Kotlyarov V, Chow P, Dabiran A, Chernyak L (2003) Impact of aluminum concentration and magnesium doping on the effect of electron injection in p-AlxGa1−xN. Solid State Electron 47(5):931–935

    ADS  CrossRef  Google Scholar 

  26. Liu W, Carlin JF, Grandjean N, Deveaud B, Jacopin G (2016) Exciton dynamics at a single dislocation in GaN probed by picosecond time-resolved cathodoluminescence. Appl Phys Lett 109(4):042101

    ADS  CrossRef  Google Scholar 

  27. Sonderegger S (2007) Picosecond time resolved cathodoluminescence to study semiconductor materials and heterostructures (École polytechnique fédérale de Lausanne)

    Google Scholar 

  28. Chernyak L, Osinsky A, Temkin H, Yang JW, Chen Q, Asif Khan M (1996) Electron beam induced current measurements of minority carrier diffusion length in gallium nitride. Appl Phys Lett 69(17):2531–2533

    ADS  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NATO Science for Peace and security award G5453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Chernyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Modak, S., Chernyak, L., Lubomirsky, I., Khodorov, S. (2020). Continuous and Time-Resolved Cathodoluminescence Studies of Electron Injection Induced Effects in Gallium Nitride. In: Palestini, C. (eds) Advanced Technologies for Security Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2021-0_11

Download citation