Skip to main content

Dielectric Characterization of (Bi1-xFex)NbO4 Ceramics Prepared by Wet-Chemical Route

  • Conference paper
  • First Online:
Nanoscience and Nanotechnology in Security and Protection against CBRN Threats

Abstract

(Bi1-xFex)NbO4 powders with 0.00 ≤ x ≤ 0.75 were prepared by a wet-chemical route. Pellets from these powders were made and sintered at temperatures between 500 and 1100 °C. The dielectric properties were analyzed as a function of the thermally activated structural and morphologic evolution. The structure was studied by X-ray diffraction (XPD) and the morphology by scanning electron microscopy (SEM). The XRD results revealed that the substitution of bismuth by iron was successful for x = 0.25 and 0.50, with the formation of the non-stoichiometric phases Bi1.34Fe0.66Nb1.34O6.35 and Bi1.721Fe1.056Nb1.134O7. The dielectric properties were measured by impedance spectroscopy method in the frequency range of 102–106 Hz as a function of temperature (200–330 K). For the samples with x ≥ 0.25 treated at 800 and 1100 °C, the dielectric constant and the dielectric losses remain practically constant with the frequency and temperature. The dielectric relaxation mechanisms were studied using the complex modulus formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Filho RC, Araújo JH, Ginani MF, D’Assunção AG Jr, Martins RA, D’Assunção AG, Mendonça LM (2010) Simulation and measurement of inset‐fed microstrip patch antennas on BiNbO4 substrates. Microw Opt Technol Lett 52:1034

    Article  Google Scholar 

  2. Freire FNA, Santos MRP, Pereira FMM, Sohn RSTM, Almeida JS, Medeiros AML, Sancho EO, Costa MM, Sombra ASB (2009) Studies of the temperature coefficient of capacitance (TCC) of a new electroceramic composite: Pb(Fe0.5Nb0.5)O3 (PFN)–Cr0.75Fe1.25O3(CRFO). J Mater Sci Mater Electron 20:149

    Article  Google Scholar 

  3. Butee S, Kulkarni AR, Prakash O, Aiyar RPRC, Sudheendran K, Raju KCJ (2010) Effect of lanthanide ion substitution on RF and microwave dielectric properties of BiNbO4 ceramics. J Alloys Compd 492:351

    Article  Google Scholar 

  4. Savina AA, Atuchin VV, Solodovnikov SF, Solodovnikova ZA, Krylov AS, Maximovskiy EA, Molokeev MS, Oreshonkov AS, Pugachev AM, Khaikina EG (2015) Synthesis, structural and spectroscopic properties of acentric triple molybdate Cs2NaBi(MoO4)3. J Solid State Chem 225:53

    Article  ADS  Google Scholar 

  5. Rao KS, Buddhudu S (2010) Structural, Thermal and Dielectric Properties of BiNbO4 Ceramic Powder. Ferroelectr Lett 37:101

    Article  Google Scholar 

  6. Mohan R, Leonard N, Wieland L (2002) Applications of bismuth (III) compounds in organic synthesis. Tetrahedron 58:8373

    Article  Google Scholar 

  7. Yang N, Sun H (2007) Biocoordination chemistry of bismuth: Recent advances. Coord Chem Rev 251:2354

    Article  Google Scholar 

  8. Shihua D, Xi Y, Yu M, Puling L (2006) Microwave dielectric properties of (Bi1−xRx)NbO4 ceramics (R=Ce, Nd, Dy, Er). J Eur Ceram Soc 26:2003

    Article  Google Scholar 

  9. Litimein F, Khenata R, Gupta SK, Murtaza G, Reshak AH, Bouhemadou A, Omran SB, Yousaf M, Jha PK (2014) Structural, electronic, and optical properties of orthorhombic and triclinic BiNbO4 determined via DFT calculations. J Mater Sci 49:7809

    Article  ADS  Google Scholar 

  10. Radha R, Muthurajan H, Koteswara Rao N, Sivaram, Pradhan, Gupta UN, Jha RK, Mirji SA, Ravi V (2008) Low temperature synthesis and characterization of BiNbO4 powders. Mater Charact 59:1083

    Article  Google Scholar 

  11. Xu C, He D, Liu C, Wang H, Zhang L, Wang P, Yin S (2013) High pressure and high temperature study the phase transitions of BiNbO4. Solid State Commun 156:21

    Article  ADS  Google Scholar 

  12. Zhou D, Wang H, Yao X, Wei X, Xiang F, Pang L (2007) Phase transformation in BiNbO4 ceramics. Appl Phys Lett 90:172910

    Article  ADS  Google Scholar 

  13. Kagata H, Inoue T, Kato J, Kameyama I (1992) Low-fire bismuth-based dielectric ceramics for microwave use. Jpn J Appl Phys 31:3152

    Article  ADS  Google Scholar 

  14. Devesa S, Graça MP, Costa LC (2018) Dielectric Properties of Bismuth Niobate Ceramics. In: Zhou Y, Dong F, Jin S (eds) Bismuth: advanced applications and defects characterization. IntechOpen, London, p 93

    Google Scholar 

  15. Alquier C, Vandenborre MT, Henry M (1986) Synthesis of niobium pentoxide gels. J Non-Cryst Solids 79:383

    Article  ADS  Google Scholar 

  16. Almeida JS, Fernandes TS, Sales AJ, Silva MA, Júnior GF, Rodrigues HO, Sombra AS (2011) Study of the structural and dielectric properties of Bi2O3 and PbO addition on BiNbO4 ceramic matrix for RF applications. J Mater Sci Mater Electron 22:978

    Article  Google Scholar 

  17. Devesa S, Graça MP, Henry F, Costa LC (2016) Dielectric properties of FeNbO4 ceramics prepared by the sol-gel method. Solid State Sci 61:44

    Article  ADS  Google Scholar 

  18. Lee BW, Abothu IR, Raj PM, Yoon CK, Tummala RR (2006) Tailoring of temperature coefficient of capacitance (TCC) in nanocomposite capacitors. Scr Mater 54:1231

    Article  Google Scholar 

  19. Czekaj D, Czekaj AL, Adamczyk M (2014) Influence of bismuth content on complex Immittance characteristics of Pressureless sintered BiNbO4 ceramics. Arch Metall Mater 59:225

    Article  Google Scholar 

  20. Belattar CBJ, Graça MPF, Costa LC, Achour ME (2010) Electric modulus-based analysis of the dielectric relaxation in carbon black loaded polymer composites. J Appl Phys 107:124111

    Article  ADS  Google Scholar 

  21. Tsangaris NKGM, Psarras GC (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33:2027

    Article  ADS  Google Scholar 

  22. Saltas V, Triantis D, Manios T, Vallianatos F (2007) Biomonitoring of environmental pollution using dielectric properties of tree leaves. Environ Monit Assess 133:69

    Article  Google Scholar 

  23. Wojnarowska Z, Knapik J, Díaz M, Ortiz A, Ortiz I, Paluch M (2014) Conductivity Mechanism in Polymerized Imidazolium-Based Protic Ionic Liquid [HSO3–BVIm][OTf]: Dielectric Relaxation Studies. Macromolecules 47:4056

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devesa, S., Graça, M.P., Costa, L.C. (2020). Dielectric Characterization of (Bi1-xFex)NbO4 Ceramics Prepared by Wet-Chemical Route. In: Petkov, P., Achour, M., Popov, C. (eds) Nanoscience and Nanotechnology in Security and Protection against CBRN Threats. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2018-0_9

Download citation

Publish with us

Policies and ethics