Skip to main content

Dielectric Properties of PMMA/PPy Composite Materials

  • Conference paper
  • First Online:
Nanoscience and Nanotechnology in Security and Protection against CBRN Threats

Abstract

This work presents a study of the structural, electrical, and dielectric properties of polymethylmethacrylate/polypyrrole composites. Structural analysis was performed using X-ray diffraction, showing an increase in the crystallinity index with the increasing of filler concentrations. The electrical conductivity mechanism and the dielectric relaxation process of these composites were studied in the frequency range from 100 Hz to 1 MHz and temperature range from 290 to 380 K, using impedance spectroscopy. The frequency-dependence of the conductivity is analyzed using the Jonscher power law. The values of the n exponent in this law are superior to 1, which is an indication that electron hopping occurs between neighboring sites. The Nyquist representations of the complex impedance spectra are modeled using the Cole-Cole model. The temperature dependence of both DC conductivity and relaxation process behaviors, using the Arrhenius equation, indicates that the conduction process is thermally activated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5:37553

    Google Scholar 

  2. Bouknaitir I, Aribou N, Elhad Kassim SA, El Hasnaoui M, Melo BMG, Achour ME, Costa LC (2017) Electrical properties of conducting polymer composites: experimental and modeling approaches. Spectro Lett 50:196

    Google Scholar 

  3. Mishra AK (2018) Conducting polymers: concepts and applications. J Atom Mol Cond Nano Phys 5:159

    Google Scholar 

  4. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783

    Google Scholar 

  5. Halik M, Klauk H, Zschieschang U, Schmid G, Ponomarenko S, Kirchmeyer S, Weber W (2003) Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors. Adv Mater 15:917

    Google Scholar 

  6. Soto-Oviedo MA, Araujo OA, Faez R, Rezende MC, De Paoli M-A (2006) Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synth Met 156:1249

    Google Scholar 

  7. El Hasnaoui M, Triki A, Achour ME, Arous M (2014) Modeling of dielectric relaxation processes of epoxy-resin filled with carbon black particles. Phys B Consens Matter 433:62

    Google Scholar 

  8. Aribou N, Nioua Y, Bouknaitir I, El Hasnaoui M, Achour ME, Costa LC (2019) Prediction of filler/matrix interphase effects on AC and DC electrical properties of carbon reinforced polymer composites. Polym Compos 40:346

    Google Scholar 

  9. Putson C, Lebrun L, Guyomar D, Muensit N, Cottinet P-J, Seveyrat L, Guiffard B (2011) Effects of copper filler sizes on the dielectric properties and the energy harvesting capability of nonpercolated polyurethane composites. J Appl Phys 109:024104

    Google Scholar 

  10. Evingür GA, Pekcan Ö. (2016) Carbon nanotubes –current progress of their polymer composites (MR Berber, IH Hafezeds), p 125. https://doi.org/10.5772/63054

  11. Aliofkhazraei M (2019) Advances in nanostructured composites: volume 1: carbon nanotube and graphene composites. CRC Press

    Google Scholar 

  12. Bouknaitir I, Striccoli M, Panniello A, Costa LC, Teixeira SS, Achour ME, Kreit L, Corricelli M (2019) Optical and dielectric properties of PMMA (poly(methyl methacrylate))/carbon dots composites. Polym Compos 40:E1312

    Google Scholar 

  13. Elimat ZM (2006) AC electrical conductivity of poly(methyl methacrylate)/carbon black composite. J Phys D Appl Phys 39:2824

    Google Scholar 

  14. Dixit M, Gupta S, Mathur V, Rathore KS, Sharma K, Saxena NS (2009) Study of glass transition temperature of PMMA and CdS-PMMA composite. Chalcogenide Lett 6:131

    Google Scholar 

  15. Belhadj AM, Miane JL, Zangar H (2001) Radiofrequency and microwave (10 kHz–8 GHz) electrical properties of polypyrrole and polypyrrole–poly(methyl methacrylate) composites. Polym Int 50:773

    Google Scholar 

  16. Tripathi SN, Saini P, Gupta D, Choudhary V (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48:6223

    Google Scholar 

  17. Achour ME, Droussi A, Zoulef S, Gmati AF, Belhadj MA, Zangar H (2008) Electrical conductivity of polypyrrole-polymethylmethacrylate composites determined by impedance spectroscopy. Spectrosc Lett 41:328

    Google Scholar 

  18. Thomas P, Ernest Ravindran RS, Varma KBR (2014) Fabrication and characterization of poly(methyl methacrylate)/CaCu3Ti4O12 composites. Polym Eng Sci 54:551

    Google Scholar 

  19. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786

    Google Scholar 

  20. Kumar M, Chakraborty S, Upadhyaya P, Pugazhenthi G (2017) Morphological, mechanical, and thermal features of PMMA nanocomposites containing two-dimensional Co–Al layered double hydroxide. J Appl Polym Sci 135:45774

    Google Scholar 

  21. Patel AK, Jain N, Patel P, Das K, Bajpai R (2018) Crystalline and absorption studies on PMMA/CdS composite using XRD & UV-Vis techniques. AIP Conf Proc 1942:070029

    Google Scholar 

  22. El-Zaher NA, Melegy MS, Guirguis OW (2014) Thermal and structural analyses of PMMA/TiO2 nanoparticles composites. Nat Sci 6:859

    Google Scholar 

  23. Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor and Francis, London

    MATH  Google Scholar 

  24. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574

    Google Scholar 

  25. Aribou N, Barnoss S., El Hasnaoui M, Achour ME, Costa LC (2019). Structural, electrical and thermal properties of composites based on conducting polymer. Jordan J Phy Accepted

    Google Scholar 

  26. Ou R, Gupta S, Parker CA, Gerhardt RA (2006) Fabrication and electrical conductivity of poly(methyl methacrylate) (PMMA)/carbon black (CB) composites: comparison between an ordered carbon black nanowire-like segregated structure and a randomly dispersed carbon black nanostructure. J Phys Chem B 110:22365

    Google Scholar 

  27. Kausar A (2019) Interpenetrating polymer network and nanocomposite IPN of polyurethane/epoxy: a review on fundamentals and advancements. Polym -Plast Polym Plast Technol Mater 58:691

    Google Scholar 

  28. Deepa KS, Kumari Nisha S, Parameswaran P, Sebastian MT, James J (2009) Effect of conductivity of filler on the percolation threshold of composites. Appl Phys Lett 94:142902

    Google Scholar 

  29. Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau WJ (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92:4024

    Google Scholar 

  30. Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2015) Analysis of the dielectric relaxation and ac conductivity behavior of polyvinyl alcohol-cadmium selenide nanocomposite films. Polym Compos 38:287

    Google Scholar 

  31. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric, London

    Google Scholar 

  32. Funke K (1993) Jump relaxation in solid electrolytes. Prog Solid State Chem 22:111

    Google Scholar 

  33. Elliott SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135

    Google Scholar 

  34. Bairlein K, Bücker M, Hördt A, Hinze B (2016) Temperature dependence of spectral induced polarization data: experimental results and membrane polarization theory. Geophys J Int 205:440

    Google Scholar 

  35. Debye P (1945) Polar molecules. Dover, New York

    Google Scholar 

  36. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. alternating current characteristics. J Chem Phys 9:341

    Google Scholar 

  37. Clayton LM, Knudsen B, Cinke M, Meyyappan M, Harmon JP (2007) DC conductivity and interfacial polarization in PMMA/nanotube and PMMA/soot composites. J Nanosci Nanotechnol 7:3572

    Google Scholar 

  38. El Hasnaoui M, Graça MPF, Achour ME, Costa LC (2011) Electric modulus analysis of carbon black/copolymer composite materials. Mater Sci Appl 2:1421

    Google Scholar 

  39. El Hasnaoui M, Graça MPF, Achour ME, Costa LC, Lahjomri F, Outzourhit A, Oueriagli A (2011) Electrical properties of CB/ copolymer composites above and below the melting temperature. J Mater Environ Sci 2:1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed E. Achour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barnoss, S., Aribou, N., Nioua, Y., El Hasnaoui, M., Achour, M.E., Costa, L.C. (2020). Dielectric Properties of PMMA/PPy Composite Materials. In: Petkov, P., Achour, M., Popov, C. (eds) Nanoscience and Nanotechnology in Security and Protection against CBRN Threats. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2018-0_21

Download citation

Publish with us

Policies and ethics