Skip to main content

Application of Ionizing Irradiation for Structure Modification of Nanomaterials

  • Conference paper
  • First Online:
Nanoscience and Nanotechnology in Security and Protection against CBRN Threats

Abstract

Ionizing irradiation passing through materials interacts with their building units inducing changes in the structure. This causes modification of their properties and alteration of their performance. Generally, the ionizing irradiation used for material modification can be part of the electromagnetic spectrum (X-ray or γ-ray irradiation) or can have corpuscular nature (such as irradiation of α-particles, β-particles, electrons, and neutrons). α and β irradiations belong to low-energy irradiations, whereas X-ray, γ-ray and neutrons are high-energy irradiations. The subject of this chapter was the observation of the changes in structure and consequently in properties of nano-dimensional materials, namely TiO2 and carbon nanostructures (graphene and multiwalled carbon nanotubes, MWCNTs), after treatment with X-ray irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chmielewski AG, Haji-Saeid M (2005) In: Gazsó LG, Ponta CC (eds) Radiation inactivation of bioterrorism agents, NATO science series I: life and Behavioural sciences – Vol. 365. IOS Press, Amsterdam, p 1

    Google Scholar 

  2. Yamamoto K, Koga Y, Fujiwara S, Kubota M (1996) New method of carbon nanotube growth by ion beam irradiation, Appl Phys Lett 69:4174

    Google Scholar 

  3. Hodson SL, Sayer RA, Koehler TP, Serrano JR, Dalton SM, Fisher TS (2013) Proceedings of the ASME 2013 summer heat transfer conference, pp. HT2013–3047C

    Google Scholar 

  4. Krasheninnikov AV, Banhart F (2007) Engineering of nanostructured carbon materials with electron or ion beams, Nat Mater 6:723

    Google Scholar 

  5. Bzdon S, Góralski J, Maniukiewicz W, Perkowski J, Rogowski J, Szadkowska-Nicze M (2012) Radiation-induced synthesis of Fe-doped TiO2: Characterization and catalytic propertiesRadiat Phys Chem 81:322

    Google Scholar 

  6. Diab KR, Doheim MM, Mahmoud SA, Shama SA, El-Boohy HA (2017) Gamma-Irradiation Improves the Photocatalytic Activity of Fe/TiO2 for Photocatalytic Degradation of 2-Chlorophenol, Chem Mater Res 9:49

    Google Scholar 

  7. Liu CJ, Yang TY, Wang CH, Chien CC, Chen ST, Wang CL, Leng WH, Hwu Y, Lin HM, Lee YC, Cheng CL, Je JH, Margaritondo G (2009) Enhanced photocatalysis, colloidal stability and cytotoxicity of synchrotron X-ray synthesized Au/TiO2 nanoparticles, Mater Chem Phys 117:74

    Google Scholar 

  8. Yang CC, Sun YJ, Chung PH, Chen WY, Swieszkowski W, Tianf W, Lin FH (2017) Development of Ce-doped TiO2 activated by X-ray irradiation for alternative cancer treatment, Ceram Int 43:12675

    Google Scholar 

  9. Yan X, Chen X (2015) Encyclopedia of inorganic and bioinorganic chemistry. Wiley, Hoboken. https://doi.org/10.1002/9781119951438.eibc2335

  10. Diebold U (2003) The surface science of titanium dioxide, Surf Sci Rep 48:53

    Google Scholar 

  11. Mezey EJ (1966) In: Powell CF, Oxley JH, Blocher JM (eds) Vapor deposition. New York, Wiley

    Google Scholar 

  12. Paunović P, Popovski O, Dimitrov AT (2011) In: Reithmaier JP et al (eds) Nanotechnological basis for advanced sensors, NATO Science for Peace and Security Series B: Physics and Biophysics. Springer

    Google Scholar 

  13. Noman MT, Ashraf MA, Azam Ali A (2019) Synthesis and applications of nano-TiO2: a review, Environ Sci Pollut Res 26:3262

    Google Scholar 

  14. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is Anatase a Better Photocatalyst Than Rutile? - Model Studies on Epitaxial TiO2 Films, Sci Rep 4:4043

    Google Scholar 

  15. Paunović P, Petrovski A, Načevski G, Grozdano V A, Marinkovski M, Andonović B, Makreski P, Popovski O, Dimitrov AT (2015) In: Reithmaier JP et al (eds) Nanoscience advances in CBRN agents detection, information and energy security, NATO Science for Peace and Security Series A: Chemistry and Biology, Springer, p 239

    Google Scholar 

  16. Geim AK, Novoselov KS (2007) The rise of graphene, Nat Mater 6:183

    Google Scholar 

  17. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals, Proc Natl Acad Sci U S A 102:10451

    Google Scholar 

  18. Katsnelson MI (2007) Graphene: carbon in two dimensions, Mater Today 10:20

    Google Scholar 

  19. Kavitha MK, Jaiswal M (2016) Graphene: A review of optical properties and photonic applications, Asian J Phys 25:809

    Google Scholar 

  20. Rocha CG, Rümmeli MH, Ibrahim I, Sevincli H, Börrnert F, Kunstmann J, Bachmatiuk A, Pötschke M, Li W, Makharza SAM, Roche S, Büchner B, Cuniberti G (2012) In: Choi W, Lee JW (eds) Graphene: synthesis and application. CRC Press/Taylor & Francis Group, Boca Raton, p 27

    Google Scholar 

  21. Obite F, Ijeomah G, Bassi JS (2018) Carbon nanotube field effect transistors: toward future nanoscale electronics, Int J Comput Appl 41:149 https://doi.org/10.1080/1206212X.2017.1415111

  22. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. London, Imperial College Press

    Google Scholar 

  23. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis, Appl Catal A 253:337

    Google Scholar 

  24. Ghosh S, Balandin AA (2012) In: Choi W, Lee JW (eds) Graphene: synthesis and application. CRC Press/Taylor & Francis Group, Boca Raton, p 313

    Google Scholar 

  25. Das S, Choi W (2012) In: Choi W, Lee JW (eds) Graphene: synthesis and application. CRC Press/Taylor & Francis Group, Boca Raton, p 27

    Google Scholar 

  26. Mikhailov S (ed) (2011) Physics and applications of graphene – experiments. InTech, Rijeka

    Google Scholar 

  27. Journet C, Bernier P (1998) Production of carbon nanotubes, Appl Phys A Mater Sci Process 67:1

    Google Scholar 

  28. Iijima S (1991) Helical microtubules of graphitic carbon, Nature 354:56

    Google Scholar 

  29. Mirion Technologies, Learning center (2015) https://www.mirion.com/learning-center/radiation-safety-basics/types-of-ionizing-radiation

  30. Ni Y, Ge X, Liu H, Zhang Z, Ye Q, Wang F (2001) Fabrication of Nano-rod Copper-polymer Composites by γ-Irradiation Route in a Heterogeneous System, Chem Lett 30:458

    Google Scholar 

  31. Kabir MS, Hossain MS, Mia M, Islam MN, Mahmudur Rahman MM, Hoque MB, Chowhury MS (2018) Mechanical Properties of Gamma-Irradiated Natural Fiber Reinforced Composites, Nano Hybrid Compos 23:24

    Google Scholar 

  32. Adlienė D (2017) In: Sun Y, Chmielewski AG (eds) Applications of ionizing radiation in materials processing, volume 1, Institute of Nuclear Chemistry and Technology, Warsaw, p 7

    Google Scholar 

  33. Banhart F (1999) Irradiation effects in carbon nanostructures, Rep Prog Phys 62:1181

    Google Scholar 

  34. Vasile C, Butnaru E (2017) In: Sun Y, Chmielewski AG (eds) Applications of ionizing radiation in materials processing, volume 1, Institute of Nuclear Chemistry and Technology, Warsaw, p 117

    Google Scholar 

  35. Kwatra D, Venugopal A, Anant S (2013) Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer, Transl Cancer Res 2:330

    Google Scholar 

  36. Holbert KE (2008) Radiation effects and damage, lecture notes from EEE 598, School of Electrical, Computer and Energy Engineering, Arizona State University

    Google Scholar 

  37. Wronski P, Surmacki J, Abramczyk H, Adamus A, Nowosielska M, Maniukiewicz W, Kozanecki M, Szadkowska-Nicze M (2015) Surface, optical and photocatalytic properties of silica-supported TiO2 treated with electron beam, Radiat Phys Chem 109:40

    Google Scholar 

  38. Latthe SS, An S, Jin S, Yoon SS (2013) High energy electron beam irradiated TiO2 photoanodes for improved water splitting, J Mater Chem A 1:13567

    Google Scholar 

  39. Krasheninnikov AV, Banhart F (2007) Engineering of nanostructured carbon materials with electron or ion beams, Nat Mater 6:723

    Google Scholar 

  40. Tian W, Li W, Yu W, Liu X (2017) A Review on Lattice Defects in Graphene: Types, Generation, Effects and Regulation, Micromachines 8:163

    Google Scholar 

  41. Li Z, Chen F (2017) Ion beam modification of two-dimensional materials: Characterization, properties, and applications, Appl Phys Rev 4:011103

    Google Scholar 

  42. Ilyin AM (2011) In: Gon GJR (ed) Graphene simulation, InTech, Rijeka, p 39

    Google Scholar 

  43. Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials, J Appl Phys 107:071301

    Google Scholar 

  44. Paunović P, Grozdanov A, Češnovar A, Ranguelov B, Makreski P, Gentile G, Fidančevska E (2015) Characterization of Nanoscaled TiO2 Produced by SimplifiedSol–Gel Method Using Organometallic Precursor, J Eng Mater Technol 137:021003

    Google Scholar 

  45. Hombikat UV 100, Technical information, Sachtleben Chemie GmbH, http://kuroppe.tagen.tohoku.ac.jp/~dsc/0075e072.pdf

  46. Sands DE (1975) Introduction to crystallography. Dover Publications, New York

    Google Scholar 

  47. Šćepanović MJ, Grujić-Brojčin M, Dohčević-Mitrović ZD, Popović ZV (2009) Characterization of anatase TiO2 nanopowder by variable-temperature Raman spectroscopy, Sci Sinter 41:67

    Google Scholar 

  48. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J Mater Chem A 2:637

    Google Scholar 

  49. Čenovar A, Paunović P, Grozdanov A, Makreski P, Fidančevska E (2012) Preparation of nano-crystalline TiO2 by Sol-gel method using titanium tetraisopropoxide (TTIP), Adv Nat Sci Theory Appl 1:133

    Google Scholar 

  50. Paschotta R (2008) Article on ‘band gap’ in the encyclopedia of laser physics and technology, 1. Edition, Wiley-VCH

    Google Scholar 

  51. Kamali AR, Fray D (2016) Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds, J Mater Sci 51:569

    Google Scholar 

  52. Hiura H, Ebbesen TW, Tanigaki K, Takahashi H (1993) Raman studies of carbon nanotubes, Phys Chem Lett 202:509

    Google Scholar 

  53. Li W, Zhang H, Wang C, Xu L, Zhu K, Xie S (1997) Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor, Appl Phys Lett 70:2684

    Google Scholar 

  54. Tunistra F, Koenig JL (1970) Raman Spectrum of Graphite, J Chem Phys 53:1126

    Google Scholar 

  55. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman Spectrum of Graphene and Graphene Layers, Phys Rev Lett 97:187401

    Google Scholar 

  56. Zhang EX, Wang B, Newaz A (2011) Low-Energy X-ray and Ozone-Exposure Induced Defect Formation in Graphene Materials and Devices, IEEE Trans Nucl Sci 58:2961

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the International Atomic Energy Agency (IAEA) within the Project Application of Ionizing Irradiations in Nanotechnology for Environmental, Energy and Health purposes (NANO IRRA NET, 2018–2019). The authors would like to thank Volodymyr Yukhymchuk from the Department of Optics and Spectroscopy, National Academy of Science of Ukraine, for the collaboration on Raman spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perica Paunović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paunović, P., Grozdanov, A., Makreski, P., Gentile, G., Dimitrov, A.T. (2020). Application of Ionizing Irradiation for Structure Modification of Nanomaterials. In: Petkov, P., Achour, M., Popov, C. (eds) Nanoscience and Nanotechnology in Security and Protection against CBRN Threats. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2018-0_2

Download citation

Publish with us

Policies and ethics