Skip to main content

Lattice Representations of Spartan Random Fields

  • Chapter
  • First Online:
Random Fields for Spatial Data Modeling

Part of the book series: Advances in Geographic Information Science ((AGIS))

  • 1711 Accesses

Abstract

Our discussion of SSRFs has so far assumed that the values of the field are defined on continuum domains \(\mathcal {D} \subset \mathbb {R}^d\). This assumption, which is inherent in the energy functional (7.4), reflects the fact that geophysical and environmental processes take place in a spatial continuum.

The most fruitful areas for the growth of the sciences were those which had been neglected as a no-man’s land between the various established fields.

Norbert Wiener

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Solid state physics focuses on the microscopic properties of materials with periodic crystal lattice structure. However, the latter does not explicitly appear in studies of macroscopic material properties and response to external stimuli for which continuum theories are employed.

  2. 2.

    Alternatively, the centers of the grid cells can be viewed as the field locations.

  3. 3.

    For notational economy we use \({\mathcal {H}}_{0}(\mathbf {x})\) for the discrete energy functional as for the continuum SSRF.

  4. 4.

    The reason for the presence of π is that the reciprocal space is spanned by wavevectors which correspond to cyclical frequencies w = 2πf in the reciprocal time domain.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, DC, USA (1972)

    MATH  Google Scholar 

  2. Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis for Spatial Data, 2nd edn. CRC Press, Boca Raton, FL, USA (2014)

    MATH  Google Scholar 

  3. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B Methodol. 36(2), 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  4. Besag, J.: Statistical analysis of non-lattice data. The Statistician 24(3), 179–195 (1975)

    Article  Google Scholar 

  5. Besag, J., Kooperberg, C.: On conditional and intrinsic autoregressions. Biometrika 82(4), 733–746 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Brook, D.: On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems. Biometrika 51(3/4), 481–483 (1964)

    Article  MathSciNet  Google Scholar 

  7. Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics, vol. 1. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  8. Christakos, G.: A Bayesian/maximum-entropy view to the spatial estimation problem. Math. Geol. 22(7), 763–777 (1990)

    Article  MathSciNet  Google Scholar 

  9. Christakos, G., Hristopulos, D.T.: Spatiotemporal Environmental Health Modelling. Kluwer, Boston (1998)

    MATH  Google Scholar 

  10. Clifford, P.: Markov random fields in statistics. In: Grimmett, G.R., Welsh, D.J.A. (eds.) Disorder in Physical Systems: A Volume in Honour of John M. Hammersley, vol. 19. Oxford University Press, Oxford, UK (1990)

    Google Scholar 

  11. Cressie, N.: Spatial Statistics. John Wiley & Sons, New York, NY, USA (1993)

    MATH  Google Scholar 

  12. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  13. Gaetan, C., Guyon, X., Bleakley, K.: Spatial Statistics and Modeling, vol. 81. Springer, New York, NY, USA (2010)

    Book  Google Scholar 

  14. Guyon, X.: Random Fields on a Network: Modeling, Statistics and Applications. Springer, New York, NY, USA (1995)

    MATH  Google Scholar 

  15. Hildebrand, F.B.: Introduction to Numerical Analysis, 2nd edn. International Series in Pure and Applied Mathematics. McGraw-Hill, New York, NY, USA (1974)

    MATH  Google Scholar 

  16. Hristopulos, D.T.: Spartan Gibbs random field models for geostatistical applications. SIAM J. Sci. Comput. 24(6), 2125–2162 (2003)

    Article  MathSciNet  Google Scholar 

  17. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2nd edn. Cambridge University Press, Cambridge, UK (2009)

    MATH  Google Scholar 

  18. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  19. Katakami, S., Sakamoto, H., Murata, S., Okada, M.: Gaussian Markov random field model without boundary conditions. J. Phys. Soc. Jpn. 86(6), 064801 (2017)

    Article  ADS  Google Scholar 

  20. Kuwatani, T., Nagata, K., Okada, M., Toriumi, M.: Markov-random-field modeling for linear seismic tomography. Phys. Rev. E 90(4), 042137 (2014)

    Article  ADS  Google Scholar 

  21. Lauritzen, S.L.: Graphical Models, vol. 17. Clarendon Press, Oxford, UK (1996)

    MATH  Google Scholar 

  22. Nakanishi-Ohno, Y., Nagata, K., Shouno, H., Okada, M.: Distribution estimation of hyperparameters in Markov random field models. J. Phys. A Math. Theor. 47(4), 045001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Oliver, D.: Calculation of the inverse of the covariance. Math. Geol. 30(7), 911–933 (1998)

    Article  MathSciNet  Google Scholar 

  24. Patra, M., Karttunen, M.: Stencils with isotropic discretization error for differential operators. Numer. Methods Partial Differ. Equ. 22(4), 936–953 (2006)

    Article  MathSciNet  Google Scholar 

  25. Pienaar, J.: Viewpoint: causality in the quantum world. Physics 10, 86 (2017)

    Article  Google Scholar 

  26. Ripley, B.D.: Spatial Statistics, vol. 575. John Wiley & Sons, Hoboken, NJ, USA (2005)

    MATH  Google Scholar 

  27. Rue, H.: Fast sampling of Gaussian Markov random fields. J. R. Stat. Soc. Ser. B (Stat Methodol.) 63(2), 325–338 (2001)

    Article  MathSciNet  Google Scholar 

  28. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC, Boca Raton, FL, USA (2005)

    Book  Google Scholar 

  29. Rue, H., Held, L.: Conditional and intrinsic autoregressions. In: Gelfand, A.E., Diggle, P., Guttorp, P., Fuentes, M. (eds.) Handbook of Spatial Statistics, chap. 12, pp. 172–198. CRC Press, Boca Raton, FL, USA (2010)

    Google Scholar 

  30. Rue, H., Held, L.: Discrete spatial variation. In: Gelfand, A.E., Diggle, P., Guttorp, P., Fuentes, M. (eds.) Handbook of Spatial Statistics, chap. 12, pp. 172–198. CRC Press, Boca Raton, FL, USA (2010)

    Google Scholar 

  31. Sakamoto, H., Nakanishi-Ohno, Y., Okada, M.: Theory of distribution estimation of hyperparameters in Markov random field models. J. Phys. Soc. Jpn. 85(6), 063801 (2016)

    Article  ADS  Google Scholar 

  32. Song, H.R., Fuentes, M., Ghosh, S.: A comparative study of Gaussian geostatistical models and Gaussian Markov random field models. J. Multivar. Anal. 99(8), 1681–1697 (2008)

    Article  MathSciNet  Google Scholar 

  33. Sun, Y., Li, B., Genton, M.G.: Geostatistics for large datasets. In: Porcu, E., Montero, J., Schlather, M. (eds.) Advances and Challenges in Space-time Modelling of Natural Events, Lecture Notes in Statistics, pp. 55–77. Springer Berlin Heidelberg (2012)

    Chapter  Google Scholar 

  34. Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods: A Mathematical Introduction. Springer, New York, NY, USA (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hristopulos, D.T. (2020). Lattice Representations of Spartan Random Fields. In: Random Fields for Spatial Data Modeling. Advances in Geographic Information Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1918-4_8

Download citation

Publish with us

Policies and ethics