Trend Models and Estimation

Part of the Advances in Geographic Information Science book series (AGIS)


In the preceding chapter we defined the trend as the component of a random field that represents the large-scale variations. In this chapter we will discuss different approaches for estimating the trend. Trend estimation is often the first step in the formulation of a spatial model.


  1. 30.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Elsevier, Amsterdam, Netherlands (2013)zbMATHGoogle Scholar
  2. 38.
    Atkenson, S.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artif. Intell. Rev. 11(1–5), 11–73 (1997)CrossRefGoogle Scholar
  3. 54.
    Beale, C.M., Lennon, J.J., Yearsley, J.M., Brewer, M.J., Elston, D.A.: Regression analysis of spatial data. Ecol. Lett. 13(2), 246–264 (2010)CrossRefGoogle Scholar
  4. 82.
    Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. In: Shavlik, J.W., Dieterich, T.G. (eds.) Information Processing Letters, pp. 377–380. Morgan Kaufmann, San Mateo, CA, USA (1987)Google Scholar
  5. 135.
    Chorti, A., Hristopulos, D.T.: Non-parametric identification of anisotropic (elliptic) correlations in spatially distributed data sets. IEEE Trans. Signal Process. 56(10), 4738–4751 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. 150.
    Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83(403), 596–610 (1988)zbMATHCrossRefGoogle Scholar
  7. 151.
    Cleveland, W.S., Loader, C.: Smoothing by local regression: principles and methods. In: Härdle, W., Shimek, G. (eds.) Statistical Theory and Computational Aspects of Smoothing, Proceedings of the COMPSTAT ’94 Satellite Meeting, pp. 10–49. Springer (1996)Google Scholar
  8. 155.
    Cotton, W.R., Bryan, G., Van den Heever, S.C.: Storm and Cloud Dynamics, vol. 99. Academic Press, Amsterdam, Netherlands (2010)Google Scholar
  9. 159.
    Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press, Boca Raton, FL, USA (2000)zbMATHCrossRefGoogle Scholar
  10. 165.
    Cressie, N.: Spatial Statistics. John Wiley & Sons, New York, NY, USA (1993)zbMATHGoogle Scholar
  11. 171.
    Cushman, J.H.: The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles: Theory and Applications of Transport in Porous Media, 1st edn. Kluwer, Dordrecht, The Netherlands (1997)CrossRefGoogle Scholar
  12. 172.
    Cushman, J.H., Bennethum, L.S., Hu, B.X.: A primer on upscaling tools for porous media. Adv. Water Resour. 25(8–12), 1043–1067 (2002)ADSCrossRefGoogle Scholar
  13. 173.
    Dagan, G.: Flow and Transport in Porous Formations. Springer, Berlin, Germany (1989)CrossRefGoogle Scholar
  14. 174.
    Dagan, G., Neuman, S.P.: Subsurface Flow and Transport: A Stochastic Approach. Cambridge University Press, Cambridge, UK (2005)Google Scholar
  15. 270.
    Galetakis, M., Hristopuloss, D.T.: Prediction of long-term quality fluctuations in the South Field lignite mine of West Macedonia. In: Agioutantis, Z., Komnitsas, K. (eds.) Proceedings of the 1st International Conference on Advances in Mineral Resources Management and Environmental Geotechnology, pp. 133–138. Heliotopos Conferences, Athens, Greece (2004)Google Scholar
  16. 275.
    Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice Hall, Englewood Cliffs, NJ (1993)Google Scholar
  17. 276.
    Gelhar, L.W., Axness, C.L.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19(1), 161–180 (1983)ADSCrossRefGoogle Scholar
  18. 330.
    Hastie, T., Tibshirani, R.J., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York, NY, USA (2008)zbMATHGoogle Scholar
  19. 353.
    Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)zbMATHCrossRefGoogle Scholar
  20. 361.
    Hristopulos, D.T.: Renormalization group methods in subsurface hydrology: overview and applications in hydraulic conductivity upscaling. Adv. Water Resour. 26(12), 1279–1308 (2003)ADSCrossRefGoogle Scholar
  21. 368.
    Hristopulos, D.T.: Stochastic local interaction (SLI) model: bridging machine learning and geostatistics. Comput. Geosci. 85(Part B), 26–37 (2015)ADSCrossRefGoogle Scholar
  22. 370.
    Hristopulos, D.T., Christakos, G.: Renormalization group analysis of permeability upscaling. Stoch. Environ. Res. Risk Assess. 13(1–2), 131–160 (1999)zbMATHCrossRefGoogle Scholar
  23. 386.
    Hunt, A., Ewing, R.: Percolation Theory for Flow in Porous Media. Lecture Notes in Physics. Springer, Berlin, Germany (2009)zbMATHGoogle Scholar
  24. 387.
    Hunt, A.G., Sahimi, M.: Flow, transport and reaction in porous media: percolation scaling, critical-path analysis, and effective-medium approximation. Rev. Geophys. 55(4), 993–1078 (2017)ADSCrossRefGoogle Scholar
  25. 401.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. John Wiley & Sons, New York, NY, USA (1998)zbMATHGoogle Scholar
  26. 421.
    Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer Science & Business Media, New York, NY, USA (2006)zbMATHGoogle Scholar
  27. 506.
    Loader, C.: Local Regression and Likelihood. Springer, New York, NY, USA (1999)zbMATHGoogle Scholar
  28. 516.
    Luo, J., Ying, K., He, P., Bai, J.: Properties of Savitzky Golay digital differentiators. Digital Signal Process. 15(2), 122–136 (2005)CrossRefGoogle Scholar
  29. 561.
    Mehta, P., Bukov, M., Wang, C.H., Day, A.G.R., Richardson, C., Fisher, C.K., Schwab, D.J.: A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019)ADSMathSciNetCrossRefGoogle Scholar
  30. 594.
    Nadaraya, E.A.: On estimating regression. Theory Probab. Appl. 9(1), 141–142 (1964)zbMATHCrossRefGoogle Scholar
  31. 602.
    Neumaier, A.: Solving ill-conditioned and singular linear systems: a tutorial on regularization. SIAM Rev. 40(3), 636–666 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. 673.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge, UK (1997)zbMATHGoogle Scholar
  33. 696.
    Rubin, Y.: Applied Stochastic Hydrogeology. Oxford, UK, New York, NY, USA (2003)Google Scholar
  34. 704.
    Runge, C.: Über empirische funktionen und die interpolation zwischen äquidistanten ordinaten. Zeitschrift für Mathematik und Physik 46(20), 224–243 (1901)zbMATHGoogle Scholar
  35. 716.
    Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedure. Anal. Chem. 36(8), 1627–1639 (1964)ADSCrossRefGoogle Scholar
  36. 719.
    Schafer, R.W.: What is a Savitzky-Golay filter? IEEE Signal Process. Mag. 28(4), 111–117 (2011)ADSCrossRefGoogle Scholar
  37. 728.
    Schneider, C.L., Attinger, S.: Beyond Thiem: A new method for interpreting large scale pumping tests in heterogeneous aquifers. Water Resour. Res. 44(4), W04427 (2008)ADSCrossRefGoogle Scholar
  38. 731.
    Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA (2002)Google Scholar
  39. 736.
    Seber, G.A.F., Lee, A.J.: Linear Regression Analysis, 2nd edn. John Wiley & Sons, Hoboken, NJ, USA (2003)zbMATHCrossRefGoogle Scholar
  40. 779.
    Stone, M., Goldbart, P.: Mathematics for Physics: A Guided Tour for Graduate Students. Cambridge University Press, Cambridge, UK (2009)zbMATHCrossRefGoogle Scholar
  41. 794.
    Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 58(1), 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  42. 795.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. V. H. Winston & Sons, Washington, DC, USA (1977)zbMATHGoogle Scholar
  43. 815.
    Varouchakis, E.A., Hristopulos, D.T.: Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables. Adv. Water Resour. 52(2), 34–49 (2013)ADSCrossRefGoogle Scholar
  44. 835.
    Watson, G.S.: Smooth regression analysis. Sankhya Ser. A 26(1), 359–372 (1964)MathSciNetzbMATHGoogle Scholar
  45. 887.
    Zimmerman, D.L., Stein, M.: Constructions for nonstationary spatial processes. In: Gelfand, A.E., Diggle, P., Guttorp, P., Fuentes, M. (eds.) Handbook of Spatial Statistics, pp. 119–127. CRC Press, Boca Raton, FL, USA (2010)Google Scholar
  46. 893.
    Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat Methodol.) 67(2), 301–320 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Technical University of CreteChaniaGreece

Personalised recommendations