Skip to main content

Point-Contact Sensors as an Innovative Tool in Defense Against Chemical Agents, Environment and Health Risks: A Review

  • Conference paper
  • First Online:
Functional Nanostructures and Sensors for CBRN Defence and Environmental Safety and Security

Abstract

The review covers the most recent results and advancements in point-contact nanosensors. Fundamentals of Yanson point contacts that determine their spectroscopic and sensor behaviour are considered. A special attention is paid to the basic properties of these nanoobjects which are responsible for their ability to demonstrate the point-contact gas-sensitive effect and excellent sensor performance. Classification of point contacts into homo- and heterocontacts and peculiarities of their electric characteristics are described. The technological principles of Yanson point-contact spectroscopy used for designing various types of point-contact sensors are discussed. The innovative approaches in sensor engineering which are evident from the peculiar properties of point-contact sensors are presented. The point-contact method of sensor spectral analysis of complex gas mixtures which does not require detection of separate components, and selective analysis of gaseous and liquid media through conductance registration in dynamic regime are introduced. Prospects for application of point-contact sensors for security, environmental and health issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rowland CE, Brown CW III, Delehanty JB, Medintz IL (2016) Nanomaterial-based sensors for the detection of biological threat agents. Mater Today 19:464

    Article  Google Scholar 

  2. Kangas MJ, Burks RM, Atwater J, Lukowicz RM, Williams P, Holmes AE (2017) Colorimetric sensor arrays for the detection and identification of chemical weapons and explosives. Crit Rev Anal Chem 47:138

    Article  Google Scholar 

  3. Banoub J (ed) (2014) Detection of chemical, biological, radiological and nuclear agents for the prevention of terrorism. Mass spectrometry and allied topics, NATO science for peace and security series a: chemistry and biology. Springer, Dordrecht

    Google Scholar 

  4. Wells K, Bradley DA (2012) A review of X-ray explosives detection techniques for checked baggage. Appl Radiat Isot 70:1729

    Article  Google Scholar 

  5. Kaszeta D (2013) CBRN and hazmat incidents at major public events: planning and response. Wiley, Hoboken. 448 pp

    Google Scholar 

  6. Pereira M, Shulika O (eds) (2014) Terahertz and mid infrared radiation: detection of explosives and CBRN (using terahertz). NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht

    Google Scholar 

  7. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I (2015) Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst 140:1376

    Article  ADS  Google Scholar 

  8. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I (2015) Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters. Analyst 140:1391

    Article  ADS  Google Scholar 

  9. Brown KE, Greenfield MT, McGrane SD, Moore DS (2016) Advances in explosives analysis – part I: animal, chemical, ion, and mechanical methods. Anal Bioanal Chem 408:35

    Article  Google Scholar 

  10. Brown KE, Greenfield MT, McGrane SD, Moore DS (2016) Advances in explosives analysis – part II: photon and neutron methods. Anal Bioanal Chem 408:49

    Article  Google Scholar 

  11. Kamarchuk GV, Pospelov AP, Kamarchuk LV, Kushch IG (2015) Chapter 11: point-contact sensors and their medical applications for breath analysis: a review. In: Karachevtsev VA (ed) Nanobiophysics: fundamentals and applications. Pan Stanford Publishing Pte. Ltd, Singapore, pp 327–379

    Chapter  Google Scholar 

  12. Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B Chem 204:250

    Article  Google Scholar 

  13. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water–an electrochemical approach. Sensors Actuators B Chem 213:515

    Article  Google Scholar 

  14. Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A (2015) Recent advances in graphene based gas sensors. Sensors Actuators B Chem 218:160

    Article  Google Scholar 

  15. Kishore Kumar RV, Murali G (2016) A survey on the present state-of-the-art of explosives, detection methods and automatic explosive detection using wireless sensor network. Int J Appl Eng Res 11:504

    Google Scholar 

  16. Askim JR, Li Z, LaGasse MK, Rankin JM, Suslick KS (2016) An optoelectronic nose for identification of explosives. Chem Sci 7:199

    Article  Google Scholar 

  17. Woo H-S, Na CW, Lee J-H (2016) Design of highly selective gas sensors via physicochemical modification of oxide nanowires: overview. Sensors 16:1531

    Article  Google Scholar 

  18. Wu Y, Yao B, Yu C, Rao Y (2018) Optical graphene gas sensors based on microfibers: a review. Sensors 18:941

    Article  Google Scholar 

  19. Honeychurch KC (ed) (2014) Nanosensors for chemical and biological applications. Sensing with nanotubes, nanowires and nanoparticles, Woodhead Publishing series in electronic and optical materials. Elsevier, Amsterdam, p 372

    Google Scholar 

  20. Naidyuk YG, Yanson IK (2005) Point-contact spectroscopy. Springer, New York, p 300

    Book  Google Scholar 

  21. Li CZ, He HX, Bogozi A, Bunch JS, Tao NJ (2000) Molecular detection based on conductance quantization of nanowires. Appl Phys Lett 76:1333

    Article  ADS  Google Scholar 

  22. Rajagopalan V, Boussaad S, Tao NJ (2003) Detection of heavy metal ions based on quantum point contacts. Nano Lett 3:851

    Article  ADS  Google Scholar 

  23. Xie F-Q, Maul R, Augenstein A, Obermair C, Starikov EB, Schön G, Schimmel T, Wenzel W (2008) Independently switchable atomic quantum transistors by reversible contact reconstruction. Nano Lett 8:4493

    Article  ADS  Google Scholar 

  24. Kushch I, Korenev N, Kamarchuk L, Pospelov A, Kravchenko A, Bajenov L, Kabulov M, Amann A, Kamarchuk G (2015) On the importance of developing a new generation of breath tests for helicobacter pylori detection. J Breath Res 9:047109

    Article  Google Scholar 

  25. Xie F-Q, Kavalenka MN, Röger M, Albrecht D, Hölscher H, Leuthold J, Schimmel T (2017) Copper atomic-scale transistors. Beilstein J Nanotechnol 8:530

    Article  Google Scholar 

  26. Kamarchuk GV, Pospelov AP, Harbuz DA, Gudimenko VA, Kamarchuk LV, Zaika AS, Pletnev AM, Kravchenko AV (2017) Nanostructural point-contact sensors for diagnostics of carcinogenic strains of Helicobacter pylori (in Russian). Biophys Bull 2:66

    Google Scholar 

  27. Yanson IK (1974) Nonlinear effects in the electrical conductance of point contacts and electron-phonon interaction in normal metals. JETP 66:1035

    Google Scholar 

  28. Kulik IO, Omelyanchuk AN, Shekhter RI (1977) Electrical conductivity of point microcontacts and the spectroscopy of phonons and impurities in normal metals. Sov J Low Temp Phys 3:1543

    Google Scholar 

  29. Khotkevich AV, Yanson IK (1995) Atlas of point contact spectra of electron-phonon interactions in metals. Kluwer Academic Publishers, Boston/Dordrecht/London. 168 pp

    Book  Google Scholar 

  30. Sharvin YV (1965) A possible method for studying Fermi surfaces. Sov Phys JETP 48:984

    Google Scholar 

  31. Kulik IO, Yanson IK (1978) Microcontact spectroscopy of phonons in the dirty limit. Sov J Low Temp Phys 4:1267

    Google Scholar 

  32. Krans JM, van Ruitenbeek JM, Fisun VV, Yanson IK, de Jongh LJ (1995) The signature of conductance quantization in metallic point contacts. Nature 375:767

    Article  ADS  Google Scholar 

  33. Pospelov AP, Pilipenko AI, Kamarchuk GV, Fisun VV, Yanson IK, Faulques E (2015) A new method for controlling the quantized growth of dendritic nanoscale point contacts via switchover and shell effects. J Phys Chem C 119:632

    Article  Google Scholar 

  34. Yanson IK, Kulik IO (1978) Point-contact spectroscopy of phonons in metals. J de Phys 39:1564

    Google Scholar 

  35. Yanson IK (1983) Point-contact electron-phonon interaction spectra of pure metals. Sov J Low Temp Phys 9:676

    Google Scholar 

  36. Yanson IK, Shklyarevsky OI (1986) Point-contact spectroscopy of metallic alloys and compounds. Sov J Low Temp Phys 12:899

    Google Scholar 

  37. Kulik IO (1984) On the determination of α2F(ω) in metals by measuring I – V characteristics of “wide” (non-ballistic) point-contact spectra. Phys Lett A 106:187

    Google Scholar 

  38. Verkin BI, Yanson IK, Kulik IO, Shklyarevski OI, Lysykh AA, Naydyuk YG (1979) Singularities in d2V/dI2 dependences of point contacts between ferromagnetic metals. Solid State Commun 30:215

    Google Scholar 

  39. Holm R (1961) Electrical contacts. House of Foreign Literature, Moscow, p 464

    Google Scholar 

  40. Kamarchuk GV, Pospelov OP, Yeremenko AV, Faulques E, Yanson IK (2006) Point-contact sensors: new prospects for а nanoscale sensitive technique. Europhys Lett 76:575

    Google Scholar 

  41. Kamarchuk GV, Pospelov AP, Savitsky AV, Koval’ LV (2014) Nonlinear cyclic transport phenomena in copper point contacts. Low Temp Phys 40:1198 

    Google Scholar 

  42. Wexler G (1966) The size effect and the non-local Boltzmann transport equation in orifice and disk geometry. Proc Phys Soc 89:927

    Article  ADS  Google Scholar 

  43. MacDonald AH, Leavens CR (1983) Influence of elastic scattering on the current-voltage characteristics of small metallic contacts: I. the Ohmic current. J Phys F 13:665

    Article  ADS  Google Scholar 

  44. Kamarchuk GV, Kolobov IG, Khotkevich AV, Yanson IK, Pospelov AP, Levitsky IA, Euler WB (2008) New chemical sensors based on point heterocontact between single wall carbon nanotubes and gold wires. Sensors Actuators B 134:1022

    Article  Google Scholar 

  45. Pospelov AP, Kamarchuk GV, Alexandrov YL, Zaika AS, Yeremenko AV, Faulques E (2004) New development of impedance spectroscopy. In: Faulques EC, Perry DL, Yeremenko AV (eds) Spectroscopy of emerging materials, NATO science series. Kluwer Academic Publishers, Boston/Dordrecht/London, pp 331–338

    Google Scholar 

  46. Pospelov AP, Kamarchuk GV, Savytskyi AV, Sakhnenko MD, Ved MV, Vakula VL (2017) Macroscopic simulation of atom-sized structures of functional materials: phenomenology of the elongated electrode system. Funct Мater 24:463

    Google Scholar 

  47. Pilipenko AI, Pospelov AP, Kamarchuk GV, Bondarenko IS, Shablo AA, Bondarenko SI (2011) Point-contact sensory nanostructure modeling. Funct Mater 18:324

    Google Scholar 

  48. Damaskin BB, Petriy OA, Tsirlina GA (2006) Electrochemistry (in Russian). Kolos, Moscow. 672 pp

    Google Scholar 

  49. Kamarchuk GV, Pospelov АP, Savytskyi AV, Herus AO, Doronin YuS, Vakula VL, Faulques E (2019) Conductance quantization as a new selective sensing mechanism in dendritic point contacts. SN Appl Sci 1:244

    Google Scholar 

  50. Shekhter RI, Kulik IO (1983) Phonon spectroscopy in heterocontacts. Sov J Low Temp Phys 9:22

    Google Scholar 

  51. Baranger HU, MacDonald AH, Leavens CR (1985) Heterocontact effects in point-contact electron-phonon spectroscopy of the alkali metals. Phys Rev B 31:6197

    Article  ADS  Google Scholar 

  52. Bobrov NL, Rybal’chenko LF, Khotkevich AV, Chubov PN, Yanson IK (1991) Patent No. 1631626 (USSR) Device for creation of a cooled point contact between metal electrodes. Published in B. I. vol 8, p 168

    Google Scholar 

  53. Fisun VV, Khotkevich AV, Morlok SV, Konopatskyi BL, Alexandrov YL, Kamarchuk GV (2008) New method of making point contacts. Low Temp Phys 34:161

    Article  ADS  Google Scholar 

  54. Chubov PN, Yanson IK, Akimenko AI (1982) Electron-phonon interaction in aluminum point contacts. Fizika Nizkikh Temp 8:64

    Google Scholar 

  55. Muller CJ, van Ruitenbeek JM, de Jongh LJ (1992) Experimental observation of the transition from weak link to tunnel junction. Physica C 191:485

    Article  ADS  Google Scholar 

  56. Kamarchuk GV, Pospelov AP, Savitskiy AV, Koval LV (2014) Nonlinear cyclical transport phenomena in copper point contacts. Low Temp Phys 40:937

    Article  ADS  Google Scholar 

  57. Kushch IG, Korenev NM, Kamarchuk LV, Pospelov AP, Alexandrov YL, Kamarchuk GV (2011) Chapter 7: sensors for breath analysis: an advance approach to express diagnostics and monitoring of human diseases. In: Khajibaev A, Mikhalovsky S (eds) Biodefence. NATO science for peace and security series a: chemistry and biology. Springer, Amsterdam, pp 63–75

    Google Scholar 

  58. Yanson AI, Yanson IK, van Ruitenbeek JM (1999) Observation of shell structure in sodium nanowires. Nature 400:144

    Article  ADS  Google Scholar 

  59. Mares AI, van Ruitenbeek JM (2005) Observation of shell effects in nanowires for the noble metals Cu, Ag and Au. Phys Rev B 72:205402

    Article  ADS  Google Scholar 

  60. de Lacy Costello B, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, Osborne D, Ratcliffe NM (2014) A review of the volatiles from the healthy human body. J Breath Res 8:014001

    Article  Google Scholar 

  61. Kamarchuk GV, Khotkevich AV, Bagatsky VM, Ivanov VG, Molinié P, Leblanc A, Faulques EC (2001) Direct determination of Debye temperature and electron-phonon interaction in 1T-VSe2. Phys Rev B 63:073107

    Article  ADS  Google Scholar 

  62. Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazzoli F, Gensini GF, Gisbert JP, Graham DY, Rokkas T, El-Omar EM, Kuipers EJ (2012) Management of Helicobacter pylori infection – the Maastricht IV/ florence consensus report. Gut 61(5):646–664

    Google Scholar 

  63. IARC Working Group Experts (2014) Helicobacter pylori eradication as a strategy for preventing gastric cancer. International Agency for Research on Cancer. IARC Working Group reports, no. 8. Lyon, 181 pp. Available at: http://www.iarc.fr/en/publications/pdfsonline/wrk/wrk8/index.php

  64. Blaser MJ (1997) Not all Helicobacter pylori strains are created equal: should all be eliminated? Lancet 349:1020

    Google Scholar 

  65. Wroblewski LE, Peek RM Jr, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23:713

    Article  Google Scholar 

  66. Yanson AI, Yanson IK, van Ruitenbeek JM (2000) Supershell structure in alkali metal nanowires. Phys Rev Lett 84:5832

    Article  ADS  Google Scholar 

  67. Martin TP (1996) Shells of atoms. Phys Rep 273:199

    Article  ADS  Google Scholar 

  68. Obermair C, Kuhn H, Schimmel T (2011) Lifetime analysis of individual-atom contacts and crossover to geometric-shell structures in unstrained silver nanowires. Beilstein J Nanotechnol 2:740

    Article  Google Scholar 

  69. Golovko SA, Gudimenko VA, Klimkin AS, Pletnev AM, Vakula VL, Zaika AS, Kamarchuk LV, Kushch IG, Pospelov AP, Kravchenko AV, Kamarchuk GV (2016) Development of criteria for analysis of point-contact sensor characteristics in complex gas media. Univ J Mater Sci 4:32

    Google Scholar 

  70. Ved MV, Sakhnenko MD, Shtefan VV, Lyon SB, Oleinyk SV, Bilyi LM (2008) Computer modeling of the nonchromate treatment of aluminum alloys by neural networks. Mater Sci 44:216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kamarchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamarchuk, G.V., Pospelov, А.P., Kamarchuk, L.V., Savytskyi, A.V., Harbuz, D.A., Vakula, V.L. (2020). Point-Contact Sensors as an Innovative Tool in Defense Against Chemical Agents, Environment and Health Risks: A Review. In: Sidorenko, A., Hahn, H. (eds) Functional Nanostructures and Sensors for CBRN Defence and Environmental Safety and Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1909-2_18

Download citation

Publish with us

Policies and ethics