Skip to main content

Soft Target Protection by Using Blast Resistant Trash Receptacles

  • Conference paper
  • First Online:
Soft Target Protection

Abstract

Many terrorist attacks in the last decade around the world have exposed the vulnerability of citizens in public places. The Migrant crisis in Europe additionally increased the intolerance among different ethnic groups leading to increased number of terrorist attacks at public places. Among others, explosive devices are often used at crowded public areas as in the case in Boston marathon 2013. Therefore blast protection of soft targets is very important issue in today’s world. Consequently the response evaluation of civilian objects, equipment and properties to this kind of loads becomes also important. For that purpose, this paper presents the results comparison between two different trash receptacles (non-blast resistant and improved design of blast resistant trash receptacle) taking into account the human injury criteria of the numerical HYBRID III 50% dummy by using the explicit code LS-DYNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Europol (2018) EU terrorism situation & trend report (Te-Sat), Retrieved 2018

    Google Scholar 

  2. Bennett B (2013) Boston bombs triggered by remote controls from toy cars, FBI says. Los Angeles Times, April 24

    Google Scholar 

  3. Schwer L, Teng H, Souli M (2015) LS-DYNA air blast techniques: comparisons with experiments for close-in charges. 10th European LS-DYNA conference 2015, Würzburg, Germany

    Google Scholar 

  4. LSTC (2013) LS-DYNA keyword user’s manual, vol I. Livermore, California

    Google Scholar 

  5. Alia A, Souli M (2006) High explosive simulation using multi-material formulations. Appl Therm Eng 26:1032–1042

    Article  Google Scholar 

  6. Chafi MS, Karami G, Ziejewski M (2009) Numerical analysis of blast-induced wave propagation using FSI and ALEmulti-material formulations. Int J Impact Eng 36:1269–1275

    Article  Google Scholar 

  7. Olovsson L, Souli M (2002) ALE and fluid-structure interaction capabilities in LS-DYNA. 7th international LS-DYNA user conference, Dearborn, US, May 19–21, 2002

    Google Scholar 

  8. Souli M, Ouahsine A, Lewin L (2000) ALE formulation for fluid–structure interaction problems. Comput Methods Appl Mech Eng 190:659–675

    Article  Google Scholar 

  9. Trajkovski J, Kunc R, Perenda J, Prebil I (2014) Minimum mesh design criteria for blast wave development and structural response-MMALE method. Lat Am J Solids Struct 11:1999–2017

    Article  Google Scholar 

  10. Schwer L, Saadeghvaziri MA, O’Daniel J, Madsen TM. Free air blast simulation: engineering model and MM-ALE calculation

    Google Scholar 

  11. Barsotti MA et al (2012) Modeling mine blast with SPH. 12th international LS-DYNA user conference, Detroit, USA

    Google Scholar 

  12. Toussaint G, Durocher R (2008) Finite element simulation using SPH particles as loading on typical light armoured vehicles. 10th international LS-DYNA users conference. Dearborn, US, June 8–10, 2008

    Google Scholar 

  13. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure interaction by SPH. Comput Struct 85:879–890

    Article  Google Scholar 

  14. Olovsson L, Hanssen AG, Børvik T, Langseth M (2010) A particle-based approach to close-range blast loading. Euro J Mech A Solids 29:1–6

    Article  Google Scholar 

  15. Børvik T et al (2011) A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates. J Mech Phys Solids 59:940–958

    Article  Google Scholar 

  16. Lacome JL (2000) Smooth particle hydrodynamics (SPH): a new feature in LS-DYNA. 6th international LS-DYNA users conference

    Google Scholar 

  17. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics. World Scientific Publishing, Cham

    Book  Google Scholar 

  18. Swegle JW, Attaway SW (1995) On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Comput Mech 17:151–168

    Article  Google Scholar 

  19. Trajkovski J (2015) Odziv centralno in ekscentrično obremenjenih oklepnih pločevin “V” in “U” oblik pod vplivom eksplozijskega vala razstreliva

    Google Scholar 

  20. Toussaint G, Bouamoul A (2010) Comparison of ALE and SPH methods for simulating mine blast effects on structures. Valcartier, December

    Google Scholar 

  21. Xu J-x, Liu X-l (2008) Analysis of structural response under blast loads using the coupled SPH-FEM approach. J Zhejiang Univ Sci A 9:1184–1192

    Article  Google Scholar 

  22. Trajkovski J, Perenda J, Kunc R (2018) Blast response of light armoured vehicles (LAVs) with flat and V-hull floor. Thin-Walled Struct 131:238–244

    Article  Google Scholar 

  23. Trajkovski J, Kunc R, Prebil I (2017) Blast response of centrally and eccentrically loaded flat-, U-, and V-shaped armored plates: comparative study. Shock Waves 27:583–591

    Article  Google Scholar 

  24. Trajkovski J (2017) Comparison of MM-ALE and SPH methods for modelling blast wave reflections of flat and shaped surfaces

    Google Scholar 

  25. Guha S, Bhalsod D, Krebs J (2011) LSTC hybrid III 50th fast dummy, positioning & post-processing. LSTC, Michigan

    Google Scholar 

  26. Noureddine A, Eskandarian A, Digges K (2002) Computer modeling and validation of a hybrid III dummy for crashworthiness simulation. Math Comput Model 35:885–893

    Article  Google Scholar 

  27. Mohan P, Marzougui D, Kan C-D (2009) Development and validation of hybrid iii crash test dummy. SAE technical paper

    Google Scholar 

  28. Arosio B et al (2017) Comparison of hybrid III and human body model in head injury encountered in pendulum impact and inverted drop tests. Transportation research circular, pp 804–815

    Google Scholar 

  29. Stanisławek S, Dziewulski P, Sławiński G (2018) Application of a bus seat buffer to mitigate frontal crash effects. In: AIP conference proceedings, AIP Publishing, 1922, pp 080007

    Google Scholar 

  30. Asadinia N, Khalkhali A, Saranjam MJ (2018) Sensitivity analysis and optimization for occupant safety in automotive frontal crash test. Lat Am J Solids Struct 15:1405–1422

    Article  Google Scholar 

  31. Bailey A et al (2013) Comparison of hybrid-III and PMHS response to simulated underbody blast loading conditions. In: Proceedings of IRCOBI conference, pp 158–171

    Google Scholar 

  32. Suhaimi K et al (2017) Simulation of hybrid-iii dummy response using three ls-dyna blast methods. Science & Technology Research Institute for Defence (Stride), pp 111

    Google Scholar 

  33. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international simposium on balistics, The Hague, Netherlands, pp. 541–547

    Google Scholar 

  34. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48

    Article  Google Scholar 

  35. Trajkovski J et al (2016) Blast resistant trash receptacles with blast loading redirection–comparative analyses. Int J Comput Meth Exp Meas 4:201–212

    Google Scholar 

  36. Gruss E (2006) A correction for primary blast injury criteria. J Trauma Acute Care Surg 60:1284–1289

    Article  Google Scholar 

  37. Zukas JA, Walters WP (2002) Explosive effects and applications. Springer London Limited, New York

    Google Scholar 

  38. Bernetič J, Kosec B, Smolej A (2013) Razvoj modela za napovedovanje kaljivosti visokotrdnih malolegiranih jekel: doktorska disertacija J. Bernetič

    Google Scholar 

  39. Bernetič J, Vuherer T, Marčetič M, Vuruna M (2012) Experimental research on new grade of steel protective material for the light armored vehicles. J Mech Eng 58:416–421

    Article  Google Scholar 

  40. Trajkovski J, Kunc R, Pepel V, Prebil I (2015) Flow and fracture behavior of high-strength armor steel PROTAC 500. Mater Des 66:37–45

    Article  Google Scholar 

Download references

Acknowledgement

The research presented in this article has been partly funded by the Slovenian Research Agency as part of the “Modelling in technics and medicine” (code P2-0109 (C)) research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovan Trajkovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trajkovski, J., Kunc, R. (2020). Soft Target Protection by Using Blast Resistant Trash Receptacles. In: Hofreiter, L., Berezutskyi, V., Figuli, L., Zvaková, Z. (eds) Soft Target Protection. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1755-5_29

Download citation

Publish with us

Policies and ethics