Skip to main content

Graphene-Based Metal-Free Catalysis

  • Conference paper
  • First Online:
  • 467 Accesses

Abstract

This chapter focuses on the use of doped carbon nanomaterials in catalysis. The availability of carbon nanotubes in the ‘90s and graphene about 10 years later, prompted the development of fundamental research and novel nanotechnologies. We discuss this topic from a point of view that links fundamental surface science to the field of catalysis, in order to present the state of the art. We describe scientific questions that material scientists have faced during these last decades, in particular, we concentrate on the debate over the role that the different nitrogen configurations in the graphene lattice can play in certain catalytic processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Conway BE, Tilak BV (2002) Electrochim Acta 47:3571–3594. https://doi.org/10.1016/S0013-4686(02)00329-8

    Article  Google Scholar 

  2. Perivoliotis DK, Tagmatarchis N (2017) Carbon 118:493–510. https://doi.org/10.1016/j.carbon.2017.03.073

    Article  Google Scholar 

  3. Li S-S, Lv J-J, Teng L-N, Wang A-J, Chen J-R, Feng J-J (2014) ACS Appl Mater Interfaces 6:10549–10555. https://doi.org/10.1021/am502148z

    Article  Google Scholar 

  4. Ma Y, Liu Z, Wang B, Zhu L, Yang J, LI X (2012) New Carbon Mater 27:250–257. https://doi.org/10.1016/S1872-5805(12)60016-X

    Article  Google Scholar 

  5. Rideal EK, Wright WM (1926) J Chem Soc 129:1813–1821. https://doi.org/10.1039/JR9262901813

    Article  Google Scholar 

  6. Mrha J (1966) Collect Czech Chem Commun 31:715–734. https://doi.org/10.1135/cccc19660715

    Article  Google Scholar 

  7. Lalande G, Côté R, Guay D, Dodelet JP, Weng LT, Bertrand P (1997) Electrochim Acta 42:1379–1388. https://doi.org/10.1016/S0013-4686(96)00361-1

    Article  Google Scholar 

  8. Strelko VV, Kuts VS, Thrower PA (2000) Carbon 38:1499–1503. https://doi.org/10.1016/S0008-6223(00)00121-4

    Article  Google Scholar 

  9. Iijima S, Ichihashi T (1993) Nature 363:603–605. https://doi.org/10.1038/363603a0

    Article  ADS  Google Scholar 

  10. Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Nature 363:605–607. https://doi.org/10.1038/363605a0

    Article  ADS  Google Scholar 

  11. Monthioux M, Kuznetsov VL (2006) Carbon 44:1621–1623. https://doi.org/10.1016/j.carbon.2006.03.019

    Article  Google Scholar 

  12. Novoselov KS (2004) Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  13. Liu X, Dai L (2016) Nat Rev Mater 1:16064. https://doi.org/10.1038/natrevmats.2016.64

    Article  ADS  Google Scholar 

  14. Liu J, Song P, Ning Z, Xu W (2015) Electrocatalysis 6:132–147. https://doi.org/10.1007/s12678-014-0243-9

    Article  Google Scholar 

  15. Wang D-W, Su D (2014) Energy Environ Sci 7:576. https://doi.org/10.1039/c3ee43463j

    Article  Google Scholar 

  16. Wu Z, Iqbal Z, Wang X (2015) Front. Chem Sci Eng 9:280–294. https://doi.org/10.1007/s11705-015-1524-4

    Article  Google Scholar 

  17. Matter PH, Ozkan US (2006) Catal Letters 109:115–123. https://doi.org/10.1007/s10562-006-0067-1

    Article  Google Scholar 

  18. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760–764. https://doi.org/10.1126/science.1168049

    Article  ADS  Google Scholar 

  19. Qu L, Liu Y, Baek J-B, Dai L (2010) ACS Nano 4:1321–1326. https://doi.org/10.1021/nn901850u

    Article  Google Scholar 

  20. Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K (2013) Nat Commun 4:2390. https://doi.org/10.1038/ncomms3390

    Article  ADS  Google Scholar 

  21. Zhang J, Zhao Z, Xia Z, Dai L (2015) Nat Nanotechnol 10:444–452. https://doi.org/10.1038/nnano.2015.48

    Article  ADS  Google Scholar 

  22. Xue Y, Liu J, Chen H, Wang R, Li D, Qu J, Dai L (2012) Angew Chemie Int Ed 51:12124–12127. https://doi.org/10.1002/anie.201207277

    Article  Google Scholar 

  23. Adjizian J-J, Leghrib R, Koos A a, Suarez-Martinez I, Crossley A, Wagner P, Grobert N, Llobet E, Ewels CP (2014) Carbon 66:662–673. https://doi.org/10.1016/j.carbon.2013.09.064

    Article  Google Scholar 

  24. Koós A a, Nicholls RJ, Dillon F, Kertész K, Biró LP, Crossley A, Grobert N (2012) Carbon 50:2816–2823. https://doi.org/10.1016/j.carbon.2012.02.047

    Article  Google Scholar 

  25. Dai J, Yuan J, Giannozzi P (2009) Appl Phys Lett 95:232105. https://doi.org/10.1063/1.3272008

    Article  ADS  Google Scholar 

  26. Wu J, Pisula W, Müllen K (2007) Chem Rev 107:718–747. https://doi.org/10.1021/cr068010r

    Article  Google Scholar 

  27. Frank IW, Tanenbaum DM, van der Zande AM, McEuen PL (2007) J. Vac. Sci Technol B Microelectron Nanom Struct 25:2558. https://doi.org/10.1116/1.2789446

    Article  ADS  Google Scholar 

  28. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  ADS  Google Scholar 

  29. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109–162. https://doi.org/10.1103/RevModPhys.81.109

    Article  ADS  Google Scholar 

  30. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652–655. https://doi.org/10.1038/nmat1967

    Article  ADS  Google Scholar 

  31. Gierz I, Riedl C, Starke U, Ast CR, Kern K (2008) Nano Lett 8:4603–4607. https://doi.org/10.1021/nl802996s

    Article  ADS  Google Scholar 

  32. Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X (2016) Nat Nanotechnol 11:218–230. https://doi.org/10.1038/nnano.2015.340

    Article  ADS  Google Scholar 

  33. Lv R, Chen G, Li Q, McCreary A, Botello-Méndez A, Morozov SV, Liang L, Declerck X, Perea-López N, Cullen DA, Feng S, Elías AL, Cruz-Silva R, Fujisawa K, Endo M, Kang F, Charlier J-C, Meunier V, Pan M, Harutyunyan AR, Novoselov KS, Terrones M (2015) Proc. Natl. Acad. Sci 112:14527–14532. https://doi.org/10.1073/ pnas.1505993112

    Article  ADS  Google Scholar 

  34. Vass EM, Hävecker M, Zafeiratos S, Teschner D, Knop-Gericke A, Schlögl R (2008) J Phys Condens Matter 20:184016. https://doi.org/10.1088/0953-8984/20/18/184016

    Article  ADS  Google Scholar 

  35. Fu Q, Bao X (2017) Chem Soc Rev 46:1842–1874. https://doi.org/10.1039/C6CS00424E

    Article  Google Scholar 

  36. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Chem Rev 112:6156–6214. https://doi.org/10.1021/cr3000412

    Article  Google Scholar 

  37. Boukhvalov DW, Katsnelson MI (2008) Nano Lett 8:4373–4379. https://doi.org/10.1021/nl802098g

    Article  ADS  Google Scholar 

  38. Su DS, Zhang J, Frank B, Thomas A, Wang X, Paraknowitsch J, Schlög R (2010) Chem Sus Chem 3:169–180. https://doi.org/10.1002/cssc.200900180

    Article  Google Scholar 

  39. Son Y-W, Cohen ML, Louie SG (2006) Nature 444:347–349. https://doi.org/10.1038/nature05180

    Article  ADS  Google Scholar 

  40. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Phys Rev B 54:17954–17961. https://doi.org/10.1103/PhysRevB.54.17954

    Article  ADS  Google Scholar 

  41. Enoki T, Kobayashi Y, Fukui K-I (2007) Int Rev Phys Chem 26:609–645. https://doi.org/10.1080/01442350701611991

    Article  Google Scholar 

  42. Fujii S, Enoki T (2013) Acc Chem Res 46:2202–2210. https://doi.org/10.1021/ar300120y

    Article  Google Scholar 

  43. Jiang D, Sumpter BG, Dai S (2007) J Chem Phys 126:134701. https://doi.org/10.1063/1.2715558

    Article  ADS  Google Scholar 

  44. Deng D, Yu L, Pan X, Wang S, Chen X, Hu P, Sun L, Bao X, Magalhaes-Paniago R, Pimenta MA, Geim AK, Bao XH (2011) Chem Commun 47:10016. https://doi.org/10.1039/c1cc13033a

    Article  Google Scholar 

  45. Shen A, Zou Y, Wang Q, Dryfe RAW, Huang X, Dou S, Dai L, Wang S (2014) Angew Chemie – Int Ed 53:10804–10808. https://doi.org/10.1002/anie.201406695

    Article  Google Scholar 

  46. Li Z, Cheng Z, Wang R, Li Q, Fang Y (2009) Nano Lett 9:3599–3602. https://doi.org/10.1021/nl901815u

    Article  ADS  Google Scholar 

  47. Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin H-J, Yoon S-M, Choi J-Y, Park MH, Yang CW, Pribat D, Lee YH (2009) Adv Mater 21:2328–2333. https://doi.org/10.1002/adma.200803016

    Article  Google Scholar 

  48. Srivastava D, Susi T, Borghei M, Kari L (2014) RSC Adv 4:15225. https://doi.org/10.1039/c3ra47784c

    Article  Google Scholar 

  49. Scardamaglia M, Aleman B, Amati M, Ewels CP, Pochet P, Reckinger N, Colomer J-F, Skaltsas T, Tagmatarchis N, Snyders R, Gregoratti L, Bittencourt C (2014) Carbon 73:371–381. https://doi.org/10.1016/j.carbon.2014.02.078

    Article  Google Scholar 

  50. Susi T, Ayala P (2015) Carbon nanomaterials for advanced energy systems. Wiley, Hoboken, pp 133–161. https://doi.org/10.1002/9781118980989.ch4

    Book  Google Scholar 

  51. Su Y, Zhang Y, Zhuang X, Li S, Wu D, Zhang F, Feng X (2013) Carbon 62:296. https://doi.org/10.1016/j.carbon.2013.05.067

    Article  Google Scholar 

  52. Podyacheva OY, Ismagilov ZR (2015) Catal Today 249:12–22. https://doi.org/10.1016/j.cattod.2014.10.033

    Article  Google Scholar 

  53. Wang H, Maiyalagan T, Wang X (2012) ACS Catal 2:781–794. https://doi.org/10.1021/cs200652y

    Article  Google Scholar 

  54. Gebhardt J, Koch RJ, Zhao W, Höfert O, Gotterbarm K, Mammadov S, Papp C, Görling A, Steinrück H-P, Seyller T (2013) Phys Rev B 87:155437. https://doi.org/10.1103/PhysRevB.87.155437

    Article  ADS  Google Scholar 

  55. Agnoli S, Favaro M (2016) J Mater Chem A 00:1–24. https://doi.org/10.1039/C5TA10599D

    Article  Google Scholar 

  56. Ferrighi L, Trioni MI, Di Valentin C (2015) J Phys Chem C 119:150305145047002. https://doi.org/10.1021/jp512522m

    Article  Google Scholar 

  57. Huang H, Zhu J, Zhang W, Tiwary CS, Zhang J, Zhang X, Jiang Q, He H, Wu Y, Huang W, Ajayan PM, Yan Q (2016) Chem Mater 28:1737–1745. https://doi.org/10.1021/acs.chemmater.5b04654

    Article  Google Scholar 

  58. Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) ACS Nano 6:205–211. https://doi.org/10.1021/nn203393d

    Article  Google Scholar 

  59. Susi T, Hardcastle TP, Hofsäss H, Mittelberger A, Pennycook TJ, Mangler C, Drummond-Brydson R, Scott AJ, Meyer JC, Kotakoski J (2017) 2D Mater 4:021013. https://doi.org/10.1088/2053-1583/aa5e78

    Article  Google Scholar 

  60. Xue Y, Wu B, Liu H, Tan J, Hu W, Liu Y (2014) Phys Chem Chem Phys 16:20392–20397. https://doi.org/10.1039/c4cp02935f

    Article  Google Scholar 

  61. Yan J-A, Chou MY (2010) Phys Rev B 82:125403. https://doi.org/10.1103/PhysRevB.82.125403

    Article  ADS  Google Scholar 

  62. Balog R, Andersen M, Jørgensen B, Sljivancanin Z, Hammer B, Baraldi A, Larciprete R, Hofmann P, Hornekær L, Lizzit S (2013) ACS Nano 7:3823–3832. https://doi.org/10.1021/nn400780x

    Article  Google Scholar 

  63. Scheffler M, Haberer D, Petaccia L, Farjam M, Schlegel R, Baumann D, Hänke T, Grüneis A, Knupfer M, Hess C, Büchner B (2012) ACS Nano 6:10590–10597. https://doi.org/10.1021/nn303485c

    Article  Google Scholar 

  64. Poh HL, Pumera M (2015) Chem Electro Chem 2:190–199. https://doi.org/10.1002/celc.201402307

    Article  Google Scholar 

  65. Struzzi C, Scardamaglia M, Hemberg A, Petaccia L, Colomer J-F, Snyders R, Bittencourt C (2015) Beilstein J Nanotechnol 6:2263–2271. https://doi.org/10.3762/bjnano.6.232

    Article  Google Scholar 

  66. Struzzi C, Scardamaglia M, Reckinger N, Colomer J-F, Sezen H, Amati M, Gregoratti L, Snyders R, Bittencourt C (2017) Nano Res 10:3151–3163. https://doi.org/10.1007/s12274-017-1532-4

    Article  Google Scholar 

  67. Struzzi C, Sezen H, Amati M, Gregoratti L, Reckinger N, Colomer J, Snyders R, Bittencourt C, Scardamaglia M (2017) Appl Surf Sci 422:104–110. https://doi.org/10.1016/j.apsusc.2017.05.258

    Article  ADS  Google Scholar 

  68. Rasool HI, Song EB, Mecklenburg M, Regan BC, Wang KL, Weiller BH, Gimzewski JK (2011) J Am Chem Soc 133:12536–12543. https://doi.org/10.1021/ja200245p

    Article  Google Scholar 

  69. Scardamaglia M, Struzzi C, Osella S, Reckinger N, Colomer J-F, Petaccia L, Snyders R, Beljonne D, Bittencourt C (2016) 2D Mater. 3:011001. https://doi.org/10.1088/2053-1583/3/1/011001.

    Article  Google Scholar 

  70. Scardamaglia M, Struzzi C, Aparicio Rebollo FJ, De Marco P, Mudimela PR, Colomer J-F, Amati M, Gregoratti L, Petaccia L, Snyders R, Bittencourt C (2015) Carbon 83:118–127. https://doi.org/10.1016/j.carbon.2014.11.009

    Article  Google Scholar 

  71. Yu L, Pan X, Cao X, Hu P, Bao XJ (2011) Catalogue 282:183–190. https://doi.org/10.1016/j.jcat.2011.06.015

    Article  Google Scholar 

  72. Huang S-F, Terakura K, Ozaki T, Ikeda T, Boero M, Oshima M, Ozaki J, Miyata S (2009) Phys Rev B 80:235410. https://doi.org/10.1103/PhysRevB.80.235410

    Article  ADS  Google Scholar 

  73. Wang S, Iyyamperumal E, Roy A, Xue Y, Yu D, Dai L (2011) Angew. Chemie – Int. Ed. 50:11756–11760. https://doi.org/10.1002/anie.201105204

    Article  Google Scholar 

  74. Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ (2013) Angew Chemie - Int Ed 52:3110–3116. https://doi.org/10.1002/anie.201209548

    Article  Google Scholar 

  75. Wang S, Zhang L, Xia Z, Roy A, Chang DW, Baek JB, Dai L (2012) Angew. Chemie - Int. Ed. 51:4209–4212. https://doi.org/10.1002/anie.201109257

    Article  Google Scholar 

  76. Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Angew. Chemie - Int. Ed 51:11496–11500. https://doi.org/10.1002/anie.201206720

    Article  Google Scholar 

  77. Zheng Y, Jiao Y, Li LH, Xing T, Chen Y, Jaroniec M, Qiao SZ (2014) ACS Nano 8:5290–5296. https://doi.org/10.1021/nn501434a

    Article  Google Scholar 

  78. Wu X, Radovic LR (2004) J Phys Chem A 108:9180–9187. https://doi.org/10.1021/jp048212w

    Article  Google Scholar 

  79. Huang S, Li Y, Feng Y, An H, Long P, Qin C, Feng W (2015) J Mater Chem A 3:23095–23105. https://doi.org/10.1039/C5TA06012E

    Article  Google Scholar 

  80. Seah C-M, Chai S-P, Mohamed AR (2014) Carbon 70:1–21. https://doi.org/10.1016/j.carbon.2013.12.073

    Article  Google Scholar 

  81. Wang H, Xie M, Thia L, Fisher A, Wang X (2014) J Phys Chem Lett 5:119–125. https://doi.org/10.1021/jz402416a

    Article  Google Scholar 

  82. Terrones M, Kamalakaran R, Seeger T, Rühle M, Zhu YQ, Kroto HW, Walton DRM, Kohler-Redlich P, Rühle M, Zhang JP, Cheetham AK, Walton DRM (2000) Chem Commun 59:2335–2336. https://doi.org/10.1039/b008253h

    Article  Google Scholar 

  83. Keskar G, Rao R, Luo J, Hudson J, Chen J, Rao AM (2005) Chem Phys Lett 412:269–273. https://doi.org/10.1016/j.cplett.2005.07.007

    Article  ADS  Google Scholar 

  84. Kudashov AG, Okotrub AV, Bulusheva LG, Asanov IP, Shubin YV, Yudanov NF, Yudanova LI, Danilovich VS, Abrosimov OG (2004) J Phys Chem B 108:9048–9053. https://doi.org/10.1021/jp048736w

    Article  Google Scholar 

  85. Khene S, Nyokong T (2012) J Porphyr Phthalocyanines 16:130–139. https://doi.org/10.1142/S1088424611004439

    Article  Google Scholar 

  86. Zhi L, Gorelik T, Friedlein R, Wu J, Kolb U, Salaneck WR, Müllen K (2005) Small 1:798–801. https://doi.org/10.1002/smll.200500150

    Article  Google Scholar 

  87. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Nano Lett 9:1752–1758. https://doi.org/10.1021/nl803279t

    Article  ADS  Google Scholar 

  88. Wu J, Liu M, Sharma PP, Yadav RM, Ma L, Yang Y, Zou X, Zhou X-D, Vajtai R, Yakobson BI, Lou J, Ajayan PM (2016) Nano Lett 16:466–470. https://doi.org/10.1021/acs.nanolett.5b04123

    Article  ADS  Google Scholar 

  89. Terrones M, Filho AGS, Rao AM (2007) Carbon nanotubes. Topics in applied physics, vol 111. Springer, Berlin/Heidelberg, pp 531–566. https://doi.org/10.1007/978-3-540-72865-8_17

    Book  Google Scholar 

  90. Shen W, Fan W (2013) J Mater Chem A 1:999. https://doi.org/10.1039/c2ta00028h

    Article  Google Scholar 

  91. Bangert U, Pierce W, Kepaptsoglou DM, Ramasse Q, Zan R, Gass MH, Van den Berg JA, Boothroyd CB, Amani J, Hofsäss H (2013) Nano Lett 13:4902–4907. https://doi.org/10.1021/nl402812y

    Article  ADS  Google Scholar 

  92. Krasheninnikov AV, Banhart F (2007) Nat Mater 6:723–733. https://doi.org/10.1038/nmat1996

    Article  ADS  Google Scholar 

  93. Felten A, Bittencourt C, Pireaux JJ, Van Lier G, Charlier JC (2005) J Appl Phys 98:074308. https://doi.org/10.1063/1.2071455

    Article  ADS  Google Scholar 

  94. Krasheninnikov A, V; Nordlund K (2010) J Appl Phys 107:071301. https://doi.org/10.1063/1.3318261

    Article  ADS  Google Scholar 

  95. Scardamaglia M, Susi T, Struzzi C, Snyders R, Di Santo G, Petaccia L, Bittencourt C (2017) Sci Rep 7:7960. https://doi.org/10.1038/s41598-017-08651-1

    Article  ADS  Google Scholar 

  96. Scardamaglia M, Amati M, Llorente B, Mudimela PR, Colomer J-F, Ghijsen J, Ewels CP, Snyders R, Gregoratti L, Bittencourt C (2014) Carbon 77:319–328. https://doi.org/10.1016/j.carbon.2014.05.035

    Article  Google Scholar 

  97. Lehtinen O, Kotakoski J, Krasheninnikov AV, Tolvanen A, Nordlund K, Keinonen J (2010) Phys Rev B 81:153401. https://doi.org/10.1103/PhysRevB.81.153401

    Article  ADS  Google Scholar 

  98. Åhlgren EH, Kotakoski J, Krasheninnikov AV (2011) Phys Rev B 83:115424. https://doi.org/10.1103/PhysRevB.83.115424

    Article  ADS  Google Scholar 

  99. Struzzi C, Scardamaglia M, Reckinger N, Sezen H, Amati M, Gregoratti L, Colomer J-F, Ewels C, Snyders R, Bittencourt C (2017) Phys Chem Chem Phys 19:31418–31428. https://doi.org/10.1039/C7CP05305C

    Article  Google Scholar 

  100. Struzzi C, Erbahar D, Scardamaglia M, Amati M, Gregoratti L, Lagos MJ, Van Tendeloo G, Snyders R, Ewels C, Bittencourt C (2015) J Mater Chem C 3:2518–2527. https://doi.org/10.1039/C4TC02478H

    Article  Google Scholar 

  101. Felten A, Eckmann A, Pireaux J-J, Krupke R, Casiraghi C (2013) Nanotechnology 24:355705. https://doi.org/10.1088/0957-4484/24/35/355705

    Article  Google Scholar 

  102. Orlando F, Lacovig P, Dalmiglio M, Baraldi A, Larciprete R, Lizzit S (2016) Surf Sci 643:214–221. https://doi.org/10.1016/j.susc.2015.06.017

    Article  ADS  Google Scholar 

  103. Lin Y, Ksari Y, Aubel D, Hajjar-Garreau S, Borvon G (2016) Carbon 100:337–344. https://doi.org/10.1016/j.carbon.2015.12.094

    Article  Google Scholar 

  104. Tang Y-B, Yin L-C, Yang Y, Bo X-H, Cao Y-L, Wang H-E, Zhang W-J, Bello I, Lee S-T, Cheng H-M, Lee C-S (2012) ACS Nano 6:1970–1978. https://doi.org/10.1021/nn3005262

    Article  Google Scholar 

  105. Ewels CP, Erbahar D, Wagner P, Rocquefelte X, Arenal R, Pochet P, Rayson M, Scardamaglia M, Bittencourt C, Briddon P (2014) Faraday Discuss 173:215–232. https://doi.org/10.1039/C4FD00111G

    Article  ADS  Google Scholar 

  106. Susi T, Pichler T, Ayala P (2015) Beilstein J. Nanotechnol. 6:177–192. https://doi.org/10.3762/bjnano.6.17

    Article  Google Scholar 

  107. Sharifi T, Hu G, Jia X, Wågberg T (2012) ACS Nano 6:8904–8912. https://doi.org/10.1021/nn302906r

    Article  Google Scholar 

  108. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B a, Haasch R, Abiade J, Yarin AL, Salehi-Khojin A (2013) Nat Commun 4:2819. https://doi.org/10.1038/ncomms3819

    Article  ADS  Google Scholar 

  109. Usachov D, Fedorov A, Vilkov O, Senkovskiy B, Adamchuk VK, Yashina LV, Volykhov AA, Farjam M, Verbitskiy NI, Grüneis A, Laubschat C, Vyalikh DV (2014) Nano Lett 14:4982–4988. https://doi.org/10.1021/nl501389h

    Article  ADS  Google Scholar 

  110. Rao CV, Cabrera CR, Ishikawa Y (2010) J Phys Chem Lett 1:2622–2627. https://doi.org/10.1021/jz100971v

    Article  Google Scholar 

  111. Maldonado S, Stevenson KJ (2005) J Phys Chem B 109:4707–4716. https://doi.org/10.1021/jp044442z

    Article  Google Scholar 

  112. Kundu S, Nagaiah TC, Xia W, Wang Y, Dommele S, Van; Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M (2009) J Phys Chem C 113:14302–14310. https://doi.org/10.1021/jp811320d

    Article  Google Scholar 

  113. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J (2011) J Mater Chem 21:8038. https://doi.org/10.1039/c1jm10845j

    Article  Google Scholar 

  114. Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J, Miyata S (2009) J Power Sources 187:93–97. https://doi.org/10.1016/j.jpowsour.2008.10.064

    Article  Google Scholar 

  115. Nagaiah TC, Kundu S, Bron M, Muhler M, Schuhmann W (2010) Electrochem Commun 12:338–341. https://doi.org/10.1016/j.elecom.2009.12.021

    Article  Google Scholar 

  116. Shao Y, Sui J, Yin G, Gao Y (2008) Appl Catal B Environ 79:89–99. https://doi.org/10.1016/j.apcatb.2007.09.047

    Article  Google Scholar 

  117. Ripalda JM, Román E, Díaz N, Galán L, Montero I, Comelli G, Baraldi A, Lizzit S, Goldoni A, Paolucci G (1999) Phys Rev B 60:R3705–R3708. https://doi.org/10.1103/PhysRevB.60.R3705

    Article  ADS  Google Scholar 

  118. Hellgren N, Guo J, Luo Y, Såthe C, Agui A, Kashtanov S, Nordgren J, Ågren H, Sundgren J-E (2005) Thin Solid Films 471:19–34. https://doi.org/10.1016/j.tsf.2004.03.027

    Article  ADS  Google Scholar 

  119. Ikeda T, Boero M, Huang S-F, Terakura K, Oshima M, Ozaki J (2008) J Phys Chem C 112:14706–14709. https://doi.org/10.1021/jp806084d

    Article  Google Scholar 

  120. Ni S, Li Z, Yang J (2012) Nanoscale 4:1184–1189. https://doi.org/10.1039/c1nr11086a

    Article  ADS  Google Scholar 

  121. Kim H, Lee K, Woo SI, Jung Y (2011) Phys Chem Chem Phys 13:17505. https://doi.org/10.1039/c1cp21665a

    Article  Google Scholar 

  122. Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Energy Environ Sci 5:7936. https://doi.org/10.1039/c2ee21802j

    Article  Google Scholar 

  123. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Science 351:361–365. https://doi.org/10.1126/science.aad0832.

    Article  ADS  Google Scholar 

  124. Xing T, Zheng Y, Li LH, Cowie BCC, Gunzelmann D, Qiao SZ, Huang S, Chen Y (2014) ACS Nano 8:6856–6862. https://doi.org/10.1021/nn501506p

    Article  Google Scholar 

  125. Kondo T, Casolo S, Suzuki T, Shikano T, Sakurai M, Harada Y, Saito M, Oshima M, Trioni MI, Tantardini GF, Nakamura J (2012) Phys Rev B 86:035436. https://doi.org/10.1103/PhysRevB.86.035436

    Article  ADS  Google Scholar 

  126. Feng L, Yang L, Huang Z, Luo J, Li M, Wang D, Chen Y (2013) Sci Rep 3:3306. https://doi.org/10.1038/srep03306

    Article  ADS  Google Scholar 

  127. Ertl G, Freund H-J (1999) Phys Today 52:32–38. https://doi.org/10.1063/1.882569

    Article  Google Scholar 

  128. Zhang C, Grass ME, McDaniel AH, Decaluwe SC, El Gabaly F, Liu Z, McCarty KF, Farrow RL, Linne M a, Hussain Z, Jackson GS, Bluhm H, Eichhorn BW (2010) Nat Mater 9:944–949. https://doi.org/10.1038/nmat2851

    Article  ADS  Google Scholar 

  129. Salmeron M, Schlögl R (2008) Surf Sci Rep 63:169–199. https://doi.org/10.1016/j.surfrep.2008.01.001

    Article  ADS  Google Scholar 

  130. Amati M, Abyaneh MK, Gregoratti LJ (2013) Instrumentalist 8:T05001–T05001. https://doi.org/10.1088/1748-0221/8/05/T05001

    Article  ADS  Google Scholar 

  131. Toyoshima R, Kondoh H (2015) J Phys Condens Matter 27:083003. https://doi.org/10.1088/0953-8984/27/8/083003

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Scardamaglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scardamaglia, M., Bittencourt, C. (2019). Graphene-Based Metal-Free Catalysis. In: Bittencourt, C., Ewels, C., Llobet, E. (eds) Nanoscale Materials for Warfare Agent Detection: Nanoscience for Security. NMWAD 2017. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1620-6_9

Download citation

Publish with us

Policies and ethics