Photodynamic therapy is a medical tool to treat diverse diseases such as cancer and infections caused from bacteria and fungi. Photodynamic therapy involves the use of light sources and photosensitive molecules to produce reactive oxygen species responsible for killing ill cell, bacteria and fungi. Recent advances in nanotechnology and nanoparticle fabrication open new strategies to improve the efficiency and selectively of photodynamic therapy. In this chapter, we summarize the principles that govern photodynamic process and advantages in using graphene in conjugation with photodynamic agents. It is expected that graphene and graphene-based material enhance the photosensitivity of common agents improving the therapy results.


Graphene Phototherapy 



The present work was financially supported by CONACYT through the project PN-1767. SA is thankful to CONACYT for the masters’ scholarship number 486938. Thanks are given to Marcos Moshinsky Foundation for finantial support. Authors are grateful to M.C. Jonathan S. de Lira Escobedo for help with images.


  1. 1.
    Zeyd I, Hamblin MR (2015) Photodynamic therapy of infectious disease mediated by functionalized fullerenes. In: Rai M, Kon K (eds) Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases. Elservier Inc, London, pp 69–70Google Scholar
  2. 2.
    Eva Ramón G (2015) Terapia fotodinámica: teoría y práctica. Instituto Politécnico Nacional, MexicoGoogle Scholar
  3. 3.
    Broekgaarden M, Weijer R, van Gulik TM, Hamblin MR, Heger M (2015) Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev 34(4):643–690CrossRefGoogle Scholar
  4. 4.
    Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M et al (1998) Photodynamic therapy. JNCI: J Natl Cancer Inst 90(12):889–905CrossRefGoogle Scholar
  5. 5.
    Moan J (1990) On the diffusion length of singlet oxygen in cells and tissues. J Photochem Photobiol B Biol 6(3):343–344CrossRefGoogle Scholar
  6. 6.
    Brown SB (2003) The role of light in the treatment of non-melanoma skin cancer using methyl aminolevulinate. J Dermatol Treat 14(sup3):11–14CrossRefGoogle Scholar
  7. 7.
    Kalka K, Merk H, Mukhtar H (2000) Photodynamic therapy in dermatology. J Am Acad Dermatol 42(3):389–413CrossRefGoogle Scholar
  8. 8.
    Vermathen M, Marzorati M, Vermathen P, Bigler P (2010) pH-dependent distribution of chlorin e6 derivatives across phospholipid bilayers probed by NMR spectroscopy. Langmuir 26(13):11085–11094CrossRefGoogle Scholar
  9. 9.
    Bhatia T, Husen P, Brewer J, Bagatolli LA, Hansen PL, Ipsen JH, Mouritsen OG (2015) Preparing giant unilamellar vesicles (GUVs) of complex lipid mixtures on demand: mixing small unilamellar vesicles of compositionally heterogeneous mixtures. Biochim Biophys Acta (BBA)-Biomembr 1848(12):3175–3180CrossRefGoogle Scholar
  10. 10.
    van Swaay D (2013) Microfluidic methods for forming liposomes. Lab Chip 13(5):752–767CrossRefGoogle Scholar
  11. 11.
    Moor AC (2000) Signaling pathways in cell death and survival after photodynamic therapy. J Photochem Photobiol B Biol 57(1):1–13CrossRefGoogle Scholar
  12. 12.
    Agostinis P, Buytaert E, Breyssens H, Hendrickx N (2004) Regulatory pathways in photodynamic therapy induced apoptosis. Photochem Photobiol Sci 3(8):721–729CrossRefGoogle Scholar
  13. 13.
    Dewaele M, Verfaillie T, Martinet W, Agostinis P (2010) Death and survival signals in photodynamic therapy. In: Photodynamic therapy: methods and protocols. Humana Press, New York, pp 7–33CrossRefGoogle Scholar
  14. 14.
    Donnelly RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163(1):1–12CrossRefGoogle Scholar
  15. 15.
    Eggimann P, Garbino J, Pittet D (2003) Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis 3(11):685–702CrossRefGoogle Scholar
  16. 16.
    Han D, Xue J, Wang T, Liu Y (2016) Observation of clinical efficacy of photodynamic therapy in 3 patients with refractory plaque-stage mycosis fungoides. Photodiagn Photodyn Ther 16:9–11CrossRefGoogle Scholar
  17. 17.
    Quiroga ED, Mora SJ, Alvarez MG, Durantini EN (2016) Photodynamic inactivation of Candida albicans by a tetracationic tentacle porphyrin and its analogue without intrinsic charges in presence of fluconazole. Photodiagn Photodyn Ther 13:334–340CrossRefGoogle Scholar
  18. 18.
    Mora SJ, Cormick MP, Milanesio ME, Durantini EN (2010) The photodynamic activity of a novel porphyrin derivative bearing a fluconazole structure in different media and against Candida albicans. Dyes Pigments 87(3):234–240CrossRefGoogle Scholar
  19. 19.
    Cormick MP, Alvarez MG, Rovera M, Durantini EN (2009) Photodynamic inactivation of Candida albicans sensitized by tri-and tetra-cationic porphyrin derivatives. Eur J Med Chem 44(4):1592–1599CrossRefGoogle Scholar
  20. 20.
    Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12(7):317–324CrossRefGoogle Scholar
  21. 21.
    Azizi A, Amirzadeh Z, Rezai M, Lawaf S, Rahimi A (2016) Effect of photodynamic therapy with two photosensitizers on Candida albicans. J Photochem Photobiol B Biol 158:267–273CrossRefGoogle Scholar
  22. 22.
    Machado-De-Sena RM, Correa L, Kato IT, Prates RA, Senna AM, Santos CC et al (2014) Photodynamic therapy has antifungal effect and reduces inflammatory signals in Candida albicans-induced murine vaginitis. Photodiagn Photodyn Ther 11(3):275–282CrossRefGoogle Scholar
  23. 23.
    Rayner-Canham G, García RLE, Garcés SB (2000) Química inorgánica descriptiva. Pearson educación, MéxicoGoogle Scholar
  24. 24.
    Yasuda EI (ed) (2003) Carbon alloys: novel concepts to develop carbon science and technology. Gulf Professional Publishing, Elsevier Science Ltd, Kidlington, Oxford, UKGoogle Scholar
  25. 25.
    Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. Crit Rev Solid State Mater Sci 27(3–4):227–356ADSCrossRefGoogle Scholar
  26. 26.
    Neto AC, Guinea F, Peres NM (2006) Drawing conclusions from graphene. Phys World 19(11):33CrossRefGoogle Scholar
  27. 27.
    Vajtai R (2013) Handbook springer of nanomaterials. Editorial Springer Dordrecht Heidelberg (New York, EUA)Google Scholar
  28. 28.
    Quintana M, Spyrou K, Grzelczak M, Browne WR, Rudolf P, Prato M (2010) Functionalization of graphene via 1, 3-dipolar cycloaddition. ACS Nano 4(6):3527–3533CrossRefGoogle Scholar
  29. 29.
    Morrison RT, Boyd RN (1998) Química Orgánica, 5th edn. Addison Wesley Longman de México, MéxicoGoogle Scholar
  30. 30.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669ADSCrossRefGoogle Scholar
  31. 31.
    Kocman M, Pykal M, Jurečka P (2014) Electric quadrupole moment of graphene and its effect on intermolecular interactions. Phys Chem Chem Phys 16(7):3144–3152CrossRefGoogle Scholar
  32. 32.
    Cao G (2006) Nanoestructures and nanomaterials synthesis, properties and applications. Imperial College Press, London, pp 7–10Google Scholar
  33. 33.
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568ADSCrossRefGoogle Scholar
  34. 34.
    Hernández-Sánchez D, Scardamaglia M, Saucedo-Anaya S, Bittencourt C, Quintana M (2016) Exfoliation of graphite and graphite oxide in water by chlorin e 6. RSC Adv 6(71):66634–66640CrossRefGoogle Scholar
  35. 35.
    Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63ADSCrossRefGoogle Scholar
  36. 36.
    Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6(11):858–861ADSCrossRefGoogle Scholar
  37. 37.
    Ballesteros MNS (2009) Tecnología de proceso y transformación de materiales, 2nd edn. Ediciones UPC, BarcelonaGoogle Scholar
  38. 38.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388ADSCrossRefGoogle Scholar
  39. 39.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907ADSCrossRefGoogle Scholar
  40. 40.
    Callister WD (2007) Materials science and engineering: an introduction, 7th edn. Wiley, Hoboken, pp 668–671Google Scholar
  41. 41.
    Neto AHC (2010) The carbon new age. Mater Today 13(3):12–17CrossRefGoogle Scholar
  42. 42.
    Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10(2):398–405ADSCrossRefGoogle Scholar
  43. 43.
    He H, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22(17):5054–5064CrossRefGoogle Scholar
  44. 44.
    Quintana M, Montellano A, Del Rio-Castillo E, Van Tendeloo G, Bittencourt C, Prato M (2011) Selective organic functionalization of graphene bulk or graphene edges. Chem Commun 47(11):9330–9332CrossRefGoogle Scholar
  45. 45.
    Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306CrossRefGoogle Scholar
  46. 46.
    Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212CrossRefGoogle Scholar
  47. 47.
    Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75(15):153401ADSCrossRefGoogle Scholar
  48. 48.
    Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323(5914):610–613ADSCrossRefGoogle Scholar
  49. 49.
    Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15):3342–3347CrossRefGoogle Scholar
  50. 50.
    Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105ADSCrossRefGoogle Scholar
  51. 51.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240CrossRefGoogle Scholar
  52. 52.
    Jaleel JA, Sruthi S, Pramod K (2017) Reinforcing nanomedicine using graphene family nanomaterials. J Control Release 255:218–230CrossRefGoogle Scholar
  53. 53.
    Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRefGoogle Scholar
  54. 54.
    Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539CrossRefGoogle Scholar
  55. 55.
    Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158CrossRefGoogle Scholar
  56. 56.
    Zhu Y, Cai W, Piner RD, Velamakanni A, Ruoff RS (2009) Transparent self-assembled films of reduced graphene oxide platelets. Appl Phys Lett 95(10):103104ADSCrossRefGoogle Scholar
  57. 57.
    Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, Zhou X, Guo S, Cui D (2011) Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 1:240–250CrossRefGoogle Scholar
  58. 58.
    Akbari T, Pourhajibagher M, Hosseini F, Chiniforush N, Gholibegloo E, Khoobi M et al (2017) The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against enterococcus faecalis. Photodiagn Photodyn Ther 20:148–153CrossRefGoogle Scholar
  59. 59.
    Li Y, Dong H, Li Y, Shi D (2015) Graphene-based nanovehicles for photodynamic medical therapy. Int J Nanomedicine 10:2451CrossRefGoogle Scholar
  60. 60.
    Wu Q, Chu M, Shao Y, Wo F, Shi D (2016) Reduced graphene oxide conjugated with CuInS 2/ZnS nanocrystals with low toxicity for enhanced photothermal and photodynamic cancer therapies. Carbon 108:21–37CrossRefGoogle Scholar
  61. 61.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  62. 62.
    Fan B, Guo H, Shi J, Shi C, Jia Y, Wang H et al (2016) Facile one-pot preparation of silver/reduced graphene oxide nanocomposite for cancer photodynamic and photothermal therapy. J Nanosci Nanotechnol 16(7):7049–7054CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Universidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations