Skip to main content

Carbon and Nitrogen Metabolism of Sponge Microbiome

  • Chapter
  • First Online:
Symbiotic Microbiomes of Coral Reefs Sponges and Corals

Abstract

Sponges represent an evolutionarily divergent group of species with widespread physiological and ecological traits. Spongology has grown into a discipline attracting a progressively growing population of hundreds of scientists across the world. Sponges host complex communities of microbial symbionts and thus are ideal model to test functional equivalence and evolutionary convergence that exists in complex symbiont communities across phylogenetically divergent hosts. Many studies have demonstrated the tremendous advances in our understanding of the composition and phylogenetic diversity of sponge-associated microbes. As a comparison, the in situ activity and function of these microbes has become a major research focus. Already the rewards of this new emphasis are evident, with cultivation-independent genomic and experimental approaches yielding novel insights into symbiont function. Herein, this review highlights the largest part of the available knowledge on recent developments about the sponge-meditated nutrient fluxes and their ecological implications of carbon and nitrogen. Gene, genome, transcriptome, and next-generation sequencing (NGS) analyses have provided extraordinary insights into the sponge microbial functions as well as the ecological roles. This review has covered the recent findings regarding dynamics of sponge microbiome, and several interesting research areas, that we believe are deserving of increased attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cavalier-Smith T. Origin of animal multicellularity: precursors, causes, consequences-the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Phil Trans R Soc B. 2017;372:20150476.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Leys SP, Rohksar DS, Degnan BM. Sponges. Curr Biol. 2005;15:R114–5.

    Article  CAS  PubMed  Google Scholar 

  3. Bell JJ. Functional roles of marine sponges. Estuar Coast Shelf Sci. 2008;79:341–53.

    Article  Google Scholar 

  4. Maldonado M, Ribes M, van Duyl FC. Nutrient fluxes through sponges: biology, budgets, and ecological implications. Adv Mar Biol. 2012;62:113–82.

    Article  PubMed  Google Scholar 

  5. Southwell MW, Weisz JB, Martens CS, Lindquist N. In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol Oceanogr. 2008;53:986.

    Article  CAS  Google Scholar 

  6. Jin L, Liu F, Sun W, Zhang F, Karuppiah V, Li Z. Pezizomycotina dominates the fungal communities of South China Sea sponges Theonella swinhoei and Xestospongia testudinaria. FEMS Microbiol Ecol. 2014;90:935–45.

    Article  CAS  PubMed  Google Scholar 

  7. He L, Liu F, Karuppiah V, Ren Y, Li Z. Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing. Microb Ecol. 2014;67:951–61.

    Article  PubMed  Google Scholar 

  8. Rodriguez-Marconi S, De la Iglesia R, Diez B, Fonseca CA, Hajdu E, Trefault N. Characterization of bacterial, archaeal and eukaryote symbionts from antarctic sponges reveals a high diversity at a three-domain level and a particular signature for this ecosystem. PLoS One. 2015;10:e0138837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Polonia AR, Cleary DF, Freitas R, Coelho FJ, de Voogd NJ, Gomes NC. Comparison of archaeal and bacterial communities in two sponge species and seawater from an Indonesian coral reef environment. Mar Genomics. 2016;29:69–80.

    Article  PubMed  Google Scholar 

  11. Webster NS, Taylor MW, Behnam F, Lucker S, Rattei T, Whalan S, et al. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol. 2010;12:2070–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Reveillaud J, Maignien L, Eren AM, Huber JA, Apprill A, Sogin ML, et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 2014;8:1198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J. 2011;5:650–64.

    Article  CAS  PubMed  Google Scholar 

  14. Fiore CL, Labrie M, Jarett JK, Lesser MP. Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: molecular evidence for metabolic interchange. Front Microbiol. 2015;6:364.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kamke J, Taylor MW, Schmitt S. Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J. 2010;4:498–508.

    Article  CAS  PubMed  Google Scholar 

  16. Webster NS, Taylor MW. Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol. 2012;14:335–46.

    Article  CAS  PubMed  Google Scholar 

  17. Schmitt S, Weisz JB, Lindquist N, Hentschel U. Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Appl Environ Microbiol. 2007;73:2067–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol. 2012;10:641–54.

    Article  CAS  PubMed  Google Scholar 

  20. de Goeij JM, Moodley L, Houtekamer M, Carballeira NM, van Duyl FC. Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: evidence for DOM-feeding. Limnol Oceanogr. 2008;53:1376–86.

    Article  Google Scholar 

  21. de Goeij JM, van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AF, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.

    Article  PubMed  CAS  Google Scholar 

  22. Vacelet J, Fiala-Medioni A, Fisher CR, Boury-Esnault N. Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol Prog Ser. 1996;145:77–85.

    Article  Google Scholar 

  23. Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol. 2009;11:2228–43.

    Article  CAS  PubMed  Google Scholar 

  24. Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol. 2006;55:167–77.

    Article  CAS  PubMed  Google Scholar 

  25. Figueroa IA, Barnum TP, Somasekhar PY, Carlström CI, Engelbrektson AL, Coates JD. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc Natl Acad Sci U S A. 2018;115:E92–E101.

    Article  CAS  PubMed  Google Scholar 

  26. Burgsdorf I, Erwin PM, Lopez-Legentil S, Cerrano C, Haber M, Frenk S, et al. Biogeography rather than association with cyanobacteria structures symbiotic microbial communities in the marine sponge Petrosia ficiformis. Front Microbiol. 2014;5:529.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cebrian E, Uriz MJ, Garrabou J, Ballesteros E. Sponge mass mortalities in a warming Mediterranean Sea: are cyanobacteria-harboring species worse off? PLoS One. 2011;6:e20211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thacker RW. Impacts of shading on sponge-cyanobacteria symbioses: a comparison between host-specific and generalist associations. Integr Comp Biol. 2005;45:369–76.

    Article  PubMed  Google Scholar 

  29. Webb VL, Maas EW. Sequence analysis of 16S rRNA gene of cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli. FEMS Microbiol Lett. 2002;207:43–7.

    Article  CAS  PubMed  Google Scholar 

  30. Granados C, Camargo C, Zea S, Sanchez JA. Phylogenetic relationships among zooxanthellae (Symbiodinium) associated to excavating sponges (Cliona spp.) reveal an unexpected lineage in the Caribbean. Mol Phylogenet Evol. 2008;49:554–60.

    Article  CAS  PubMed  Google Scholar 

  31. Hill M, Allenby A, Ramsby B, Schonberg C, Hill A. Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: evidence of heteroplasmy and putative host-specific symbiont lineages. Mol Phylogenet Evol. 2011;59:81–8.

    Article  PubMed  Google Scholar 

  32. Weisz JB, Massaro AJ, Ramsby BD, Hill MS. Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biol Bull. 2010;219:189–97.

    Article  PubMed  Google Scholar 

  33. Zea S, Lopez-Victoria M. Cliona acephala (Porifera: Demospongiae: Clionaida), a new encrusting excavating reef sponge from the Colombian Caribbean belonging to the Cliona viridis species complex. Zootaxa. 2016;4178:583–92.

    Article  PubMed  Google Scholar 

  34. Zundelevich A, Lazar B, Ilan M. Chemical versus mechanical bioerosion of coral reefs by boring sponges-lessons from Pione cf. vastifica. J Exp Biol. 2007;210:91–6.

    Article  CAS  PubMed  Google Scholar 

  35. Cheshire AC, Wilkinson CR. Modelling the photosynthetic production by sponges on Davies Reef, Great Barrier Reef. Mar Biol. 1991;109:13–8.

    Article  Google Scholar 

  36. Rosell D, Uriz MJ. Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (Porifera: Hadromerida)? Mar Biol. 1992;114:503–7.

    Article  Google Scholar 

  37. Brümmer F, Pfannkuchen M, Baltz A, Hauser T, Thiel V. Light inside sponges. J Exp Mar Biol Ecol. 2008;367:61–4.

    Article  Google Scholar 

  38. Wilkinson CR. Nutrient translocation from green algal symbionts to the freshwater sponge Ephydatia fluviatilis. Hydrobiologia. 1980;75:241–50.

    Article  Google Scholar 

  39. Koopmans M, van Rijswijk P, Martens D, Egorova-Zachernyuk TA, Middelburg JJ, Wijffels RH. Carbon conversion and metabolic rate in two marine sponges. Mar Biol. 2011;158:9–20.

    Article  CAS  PubMed  Google Scholar 

  40. Wilkinson CR. Net primary productivity in coral reef sponges. Science. 1983;219:410–2.

    Article  CAS  PubMed  Google Scholar 

  41. Murray F, Widdicombe S, McNeill CL, Solan M. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions. Mar Pollut Bull. 2013;73:435–42.

    Article  CAS  PubMed  Google Scholar 

  42. Morrow KM, Bourne DG, Humphrey C, Botte ES, Laffy P, Zaneveld J, et al. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J. 2015;9:894–908.

    Article  CAS  PubMed  Google Scholar 

  43. Jensen S, Fortunato SA, Hoffmann F, Hoem S, Rapp HT, Ovreas L, et al. The relative abundance and transcriptional activity of marine sponge-associated microorganisms emphasizing groups involved in sulfur cycle. Microb Ecol. 2017;73:668–76.

    Article  CAS  PubMed  Google Scholar 

  44. Feng G, Sun W, Zhang F, Karthik L, Li Z. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei. Sci Rep. 2016;6:24966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han M, Li Z, Zhang F. The ammonia oxidizing and denitrifying prokaryotes associated with sponges from different sea areas. Microb Ecol. 2013;66:427–36.

    Article  CAS  PubMed  Google Scholar 

  46. Han M, Liu F, Zhang F, Li Z, Lin H. Bacterial and archaeal symbionts in the South China Sea sponge Phakellia fusca: community structure, relative abundance, and ammonia-oxidizing populations. Mar Biotechnol. 2012;14:701–13.

    Article  CAS  Google Scholar 

  47. Lopez-Legentil S, Erwin PM, Pawlik JR, Song B. Effects of sponge bleaching on ammonia-oxidizing Archaea: distribution and relative expression of ammonia monooxygenase genes associated with the barrel sponge Xestospongia muta. Microb Ecol. 2010;60:561–71.

    Article  CAS  PubMed  Google Scholar 

  48. Mohamed NM, Saito K, Tal Y, Hill RT. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J. 2010;4:38–48.

    Article  CAS  PubMed  Google Scholar 

  49. Nishijima M, Lindsay DJ, Hata J, Nakamura A, Kasai H, Ise Y, et al. Association of thioautotrophic bacteria with deep-sea sponges. Mar Biotechnol. 2010;12:253–60.

    Article  CAS  Google Scholar 

  50. Radax R, Hoffmann F, Rapp HT, Leininger S, Schleper C. Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges. Environ Microbiol. 2012;14:909–23.

    Article  CAS  PubMed  Google Scholar 

  51. Radax R, Rattei T, Lanzen A, Bayer C, Rapp HT, Urich T, et al. Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ Microbiol. 2012;14:1308–24.

    Article  CAS  PubMed  Google Scholar 

  52. Ribes M, Jimenez E, Yahel G, Lopez-Sendino P, Diez B, Massana R, et al. Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol. 2012;14:1224–39.

    Article  CAS  PubMed  Google Scholar 

  53. Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A, et al. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 2010;4:1557–67.

    Article  CAS  PubMed  Google Scholar 

  54. van Duyl FC, Hegeman J, Hoogstraten A, Maier C. Dissolved carbon fixation by sponge-microbe consortia of deep water coral mounds in the northeastern Atlantic Ocean. Mar Ecol Prog Ser. 2008;358:137–50.

    Article  CAS  Google Scholar 

  55. Burgsdorf I, Slaby BM, Handley KM, Haber M, Blom J, Marshall CW, et al. Lifestyle evolution in cyanobacterial symbionts of sponges. MBio. 2015;6:e00391–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu CH, Lu CK, Su HM, Chiang TY, Hwang CC, Liu T, et al. Draft genome of Myxosarcina sp. strain GI1, a baeocytous cyanobacterium associated with the marine sponge Terpios hoshinota. Stand Genomic Sci. 2015;10:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A. 2006;103:18296–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci U S A. 2010;107:8818–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim BK, Jung MY, Yu DS, Park SJ, Oh TK, Rhee SK, et al. Genome sequence of an ammonia-oxidizing soil archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1. J Bacteriol. 2011;193:5539–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci U S A. 2011;108:8420–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tian RM, Sun J, Cai L, Zhang WP, Zhou GW, Qiu JW, et al. The deep-sea glass sponge Lophophysema eversa harbors potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur. Environ Microbiol. 2016;18:2481–94.

    Article  CAS  PubMed  Google Scholar 

  62. Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, et al. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol. 2003;185:2759–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klotz MG, Arp DJ, Chain PS, El-Sheikh AF, Hauser LJ, Hommes NG, et al. Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol. 2006;72:6299–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, et al. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J. 2011;5:61–70.

    Article  PubMed  Google Scholar 

  65. Tian RM, Wang Y, Bougouffa S, Gao ZM, Cai L, Bajic V, et al. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge. Environ Microbiol. 2014;16:3548–61.

    Article  CAS  PubMed  Google Scholar 

  66. Liu F, Li J, Feng G, Li Z. New genomic insights into “Entotheonella” symbionts in Theonella swinhoei: mixotrophy, anaerobic adaptation, resilience, and interaction. Front Microbiol. 2016;7:1333.

    PubMed  PubMed Central  Google Scholar 

  67. Li Z, Wang Y, Li J, Liu F, He L, He Y, et al. Metagenomic analysis of genes encoding nutrient cycling pathways in the microbiota of deep-sea and shallow-water sponges. Mar Biotechnol. 2016;18:659–71.

    Article  CAS  Google Scholar 

  68. Moitinho-Silva L, Seridi L, Ryu T, Voolstra CR, Ravasi T, Hentschel U. Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ Microbiol. 2014;16:3683–98.

    Article  CAS  PubMed  Google Scholar 

  69. Bayer K, Moitinho-Silva L, Brummer F, Cannistraci CV, Ravasi T, Hentschel U. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiol Ecol. 2014;90:832–43.

    Article  CAS  PubMed  Google Scholar 

  70. Li ZY, Wang YZ, He LM, Zheng HJ. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics. Sci Rep. 2014;4:3895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Trindade-Silva AE, Rua C, Silva GG, Dutilh BE, Moreira AP, Edwards RA, et al. Taxonomic and functional microbial signatures of the endemic marine sponge Arenosclera brasiliensis. PLoS One. 2012;7:e39905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hestetun JT, Dahle H, Jorgensen SL, Olsen BR, Rapp HT. The microbiome and occurrence of methanotrophy in carnivorous sponges. Front Microbiol. 2016;7:1781.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jensen S, Neufeld JD, Birkeland N-K, Hovland M, Murrell JC. Insight into the microbial community structure of a Norwegian deep-water coral reef environment. Deep-Sea Res Pt I. 2008;55:1554–63.

    Article  Google Scholar 

  74. Thurber AR, Kröger K, Neira C, Wiklund H, Levin LA. Stable isotope signatures and methane use by New Zealand cold seep benthos. Mar Geol. 2010;272:260–9.

    Article  CAS  Google Scholar 

  75. Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K, et al. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J. 2013;7:2287–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hunting ER, de Goeij JM, Asselman M, van Soest RW, van der Geest HG. Degradation of mangrove-derived organic matter in mangrove associated sponges. B Mar Sci. 2010;86:871–7.

    Article  Google Scholar 

  77. Cretoiu MS, Kielak AM, Al-Soud WA, Sørensen SJ, van Elsas JD. Mining of unexplored habitats for novel chitinases—chiA as a helper gene proxy in metagenomics. Appl Microbiol Biotechnol. 2012;94:1347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci U S A. 2012;109:E1878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ward BB, Capone DG, Zehr JP. What’s new in the nitrogen cycle? Oceanography. 2007;20:101–9.

    Article  Google Scholar 

  80. Stein LY, Klotz MG. The nitrogen cycle. Curr Biol. 2016;26:R94–8.

    Article  CAS  PubMed  Google Scholar 

  81. Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature. 2008;451:293–6.

    Article  CAS  PubMed  Google Scholar 

  82. Wilkinson CR, Fay P. Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature. 1979;279:527–9.

    Article  CAS  Google Scholar 

  83. Shieh WY, Lin YM. Association of heterotrophic nitrogen-fixing bacteria with a marine sponge of Halichondria sp. Bull Mar Sci. 1994;54:557–64.

    Google Scholar 

  84. Wilkinson CR, Summons RE, Evans E. Nitrogen fixation in symbiotic marine sponges: ecological significance and difficulties in detection. Mem Qld Mus. 1999;44:667–73.

    Google Scholar 

  85. Mohamed NM, Colman AS, Tal Y, Hill RT. Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol. 2008;10:2910–21.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang F, Vicente J, Hill RT. Temporal changes in the diazotrophic bacterial communities associated with Caribbean sponges Ircinia stroblina and Mycale laxissima. Front Microbiol. 2014;5:561.

    PubMed  PubMed Central  Google Scholar 

  87. Weigel BL, Erwin PM. Effects of reciprocal transplantation on the microbiome and putative nitrogen cycling functions of the intertidal sponge, Hymeniacidon heliophila. Sci Rep. 2017;7:43247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu M, Fan L, Zhong L, Kjelleberg S, Thomas T. Metaproteogenomic analysis of a community of sponge symbionts. ISME J. 2012;6:1515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Steger D, Ettinger-Epstein P, Whalan S, Hentschel U, de Nys R, Wagner M, et al. Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol. 2008;10:1087–94.

    Article  CAS  PubMed  Google Scholar 

  90. Schlappy ML, Schottner SI, Lavik G, Kuypers MM, de Beer D, Hoffmann F. Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol. 2010;157:593–602.

    Article  PubMed  CAS  Google Scholar 

  91. Diaz MC, Ward BB. Sponge-mediated nitrification in tropical benthic communities. Mar Ecol Prog Ser. 1997;156:97–107.

    Article  CAS  Google Scholar 

  92. Jiménez E, Ribes M. Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol Oceanogr. 2007;52:948–58.

    Article  Google Scholar 

  93. Bayer K, Schmitt S, Hentschel U. Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environ Microbiol. 2008;10:2942–55.

    Article  CAS  PubMed  Google Scholar 

  94. Fiore CL, Baker DM, Lesser MP. Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen? PLoS One. 2013;8:e72961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, et al. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol. 2002;68:4431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol. 1998;64:3042–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Spieck E, Hartwig C, McCormack I, Maixner F, Wagner M, Lipski A, et al. Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environ Microbiol. 2006;8:405–15.

    Article  CAS  PubMed  Google Scholar 

  98. Foesel BU, Gieseke A, Schwermer C, Stief P, Koch L, Cytryn E, et al. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm. FEMS Microbiol Ecol. 2008;63:192–204.

    Article  CAS  PubMed  Google Scholar 

  99. Hovanec TA, Taylor LT, Blakis A, Delong EF. Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Appl Environ Microbiol. 1998;64:258–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bartosch S, Hartwig C, Spieck E, Bock E. Immunological detection of Nitrospira-like bacteria in various soils. Microb Ecol. 2002;43:26–33.

    Article  CAS  PubMed  Google Scholar 

  101. Lebedeva EV, Alawi M, Fiencke C, Namsaraev B, Bock E, Spieck E. Moderately thermophilic nitrifying bacteria from a hot spring of the Baikal rift zone. FEMS Microbiol Ecol. 2005;54:297–306.

    Article  CAS  PubMed  Google Scholar 

  102. Off S, Alawi M, Spieck E. Enrichment and physiological characterization of a novel Nitrospira-like bacterium obtained from a marine sponge. Appl Environ Microbiol. 2010;76:4640–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Keuter S, Kruse M, Lipski A, Spieck E. Relevance of Nitrospira for nitrite oxidation in a marine recirculation aquaculture system and physiological features of a Nitrospira marina-like isolate. Environ Microbiol. 2011;13:2536–47.

    Article  CAS  PubMed  Google Scholar 

  104. Maixner F, Wagner M, Lucker S, Pelletier E, Schmitz-Esser S, Hace K, et al. Environmental genomics reveals a functional chlorite dismutase in the nitrite-oxidizing bacterium ‘Candidatus Nitrospira defluvii’. Environ Microbiol. 2008;10:3043–56.

    Article  CAS  PubMed  Google Scholar 

  105. Diaz MC, Akob D, Cary CS. Denaturing gradient gel electrophoresis of nitrifying microbes associated with tropical sponges. Boll Mus Ist Biol Univ Genova. 2004;68:279–89.

    Google Scholar 

  106. Polonia AR, Cleary DF, Freitas R, de Voogd NJ, Gomes NC. The putative functional ecology and distribution of archaeal communities in sponges, sediment and seawater in a coral reef environment. Mol Ecol. 2015;24:409–23.

    Article  CAS  PubMed  Google Scholar 

  107. Rua CP, Gregoracci GB, Santos EO, Soares AC, Francini-Filho RB, Thompson F. Potential metabolic strategies of widely distributed holobionts in the oceanic archipelago of St Peter and St Paul (Brazil). FEMS Microbiol Ecol. 2015;91:fiv043.

    Article  PubMed  CAS  Google Scholar 

  108. van Kessel MA, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJ, Kartal B, et al. Complete nitrification by a single microorganism. Nature. 2015;528:555–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zumft WG. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev. 1997;61:533–616.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Shieh WY, Lin YT, Jean WD. Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol. 2004;54:2307–12.

    Article  CAS  PubMed  Google Scholar 

  111. Enticknap JJ, Kelly M, Peraud O, Hill RT. Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol. 2006;72:3724–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang Z, Li Z. Spatial distribution of prokaryotic symbionts and ammoxidation, denitrifier bacteria in marine sponge Astrosclera willeyana. Sci Rep. 2012;2:528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Zhang X, He L, Zhang F, Sun W, Li Z. The different potential of sponge bacterial symbionts in N2 release indicated by the phylogenetic diversity and abundance analyses of denitrification genes, nirK and nosZ. PLoS One. 2013;8:e65142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. de Voogd NJ, Cleary DF, Polonia AR, Gomes NC. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol Ecol. 2015;91:fiv019.

    Article  PubMed  CAS  Google Scholar 

  115. Lund MB, Smith JM, Francis CA. Diversity, abundance and expression of nitrite reductase (nirK)-like genes in marine thaumarchaea. ISME J. 2012;6:1966–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol. 2005;71:4840–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, Imhoff JF. Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol. 2007;59:47–63.

    Article  CAS  PubMed  Google Scholar 

  118. Mohamed NM, Rao V, Hamann MT, Kelly M, Hill RT. Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl Environ Microbiol. 2008;74:4133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT. Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol. 2008;74:1209–22.

    Article  CAS  PubMed  Google Scholar 

  120. Montalvo NF, Hill RT. Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Appl Environ Microbiol. 2011;77:7207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Croue J, West NJ, Escande ML, Intertaglia L, Lebaron P, Suzuki MT. A single betaproteobacterium dominates the microbial community of the crambescidine-containing sponge Crambe crambe. Sci Rep. 2013;3:2583.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Weigel BL, Erwin PM. Intraspecific variation in microbial symbiont communities of the sun sponge, Hymeniacidon heliophila, from intertidal and subtidal habitats. Appl Environ Microbiol. 2015;82:650–8.

    Article  PubMed  CAS  Google Scholar 

  123. Pimentel-Elardo S, Wehrl M, Friedrich AB, Jensen PR, Hentschel U. Isolation of planctomycetes from Aplysina sponges. Aquat Microb Eco. 2003;33:239–45.

    Article  Google Scholar 

  124. Izumi H, Sagulenko E, Webb RI, Fuerst JA. Isolation and diversity of planctomycetes from the sponge Niphates sp., seawater, and sediment of Moreton Bay, Australia. Antonie Van Leeuwenhoek. 2013;104:533–46.

    Article  CAS  PubMed  Google Scholar 

  125. Mohan SB, Schmid M, Jetten M, Cole J. Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuit in the biological nitrogen cycle that competes with denitrification. FEMS Microbiol Ecol. 2004;49:433–43.

    Article  CAS  PubMed  Google Scholar 

  126. Herrero A, Muro-Pastor AM, Flores E. Nitrogen control in cyanobacteria. J Bacteriol. 2001;183:411–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gibson AH, Jenkins BD, Wilkerson FP, Short SM, Zehr JP. Characterization of cyanobacterial glnA gene diversity and gene expression in marine environments. FEMS Microbiol Ecol. 2006;55:391–402.

    Article  CAS  PubMed  Google Scholar 

  128. Feng G, Sun W, Zhang F, Orlic S, Li Z. Functional transcripts indicate phylogenetically diverse active ammonia-scavenging microbiota in sympatric sponges. Mar Biotechnol. 2018;20:131–43.

    Article  CAS  Google Scholar 

  129. Glibert PM, Azanza R, Burford M, Furuya K, Abal E, Al-Azri A, et al. Ocean urea fertilization for carbon credits poses high ecological risks. Mar Pollut Bull. 2008;56:1049–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Collier JL, Baker KM, Bell SL. Diversity of urea-degrading microorganisms in open-ocean and estuarine planktonic communities. Environ Microbiol. 2009;11:3118–31.

    Article  CAS  PubMed  Google Scholar 

  131. Su J, Jin L, Jiang Q, Sun W, Zhang F, Li Z. Phylogenetically diverse ureC genes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospongia testudinaria. PLoS One. 2013;8:e64848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial supports from the Natural Science Foundation of China (NSFC) (31861143020, 41776138, 41742002, U1301131, 41176127, 41076077), the High-Tech Research and Development Program of China (2013AA092901, 2011AA090702, 2007AA09Z447, 2004AA628060, 2002AA608080), and the National Major Scientific Research Program of China (2013CB956103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, G., Li, Z. (2019). Carbon and Nitrogen Metabolism of Sponge Microbiome. In: Li, Z. (eds) Symbiotic Microbiomes of Coral Reefs Sponges and Corals. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1612-1_9

Download citation

Publish with us

Policies and ethics