Skip to main content

After the Taxonomic Identification Phase: Addressing the Functions of Symbiotic Communities Within Marine Invertebrates

  • Chapter
  • First Online:
Symbiotic Microbiomes of Coral Reefs Sponges and Corals

Abstract

Characterizations of the identity and diversity of microbial symbiotic communities (“microbiomes”) within different sponges have advanced considerably over the last two decades. Thousands of microbes, mostly unculturable, operational taxonomic units (OTUs) have been identified through the advances of high-throughput DNA sequencing. However, in spite of compelling data pointing to bona fide symbioses between many microbes and the sponge host, determination of specific microbial symbiont functions remains difficult to pinpoint and equivocal in many cases. In this chapter, I highlight past and present approaches toward addressing the potential functions of microbial symbionts (mostly bacterial) found in marine sponges and invertebrates. In an interesting irony, one barrier to effective definition of some symbiont microbial functions stems from their obligate dependence on their host. Investigations suggest that microbes significantly contribute to fundamental processes such as elemental cycling, anabolism, and catabolism. An additional likely role for symbionts is the biosynthesis of unique secondary metabolites (SMs) and vitamins, exhibited in many sponge species. These can be used as defensive or communication factors increasing fitness and thus benefiting the holobiont, which appears more and more reminiscent of a vibrant community than the traditional notion of an individual sponge. One approach to circumvent the dearth of empirical evidence on specific symbiont functions is to apply modern -omics methods: for example, sequencing the entire sponge holobiont (host and microbiome) as a metagenome and metatranscriptome can reveal potential functional genetic information. Together with computational tools, one can infer function from biological sequence data, although rigorous experimentation is still needed for verifications. Newer combinations of older, sophisticated technologies such as fluorescence in situ hybridization-correlative light and electron microscopy (FISH-CLEM), stable isotope tracking, and nanoscale secondary ion mass spectrometry (NanoSIMS) now promise to reveal more potential symbiont functions. Metaproteomics will also help further advance the understanding of the relationships within the holobiont community, but its wide applicability still remains mostly on the horizon. Other pervasive questions on the origins, coevolution, and fitness of specific symbiont-host partners include relevant microbiome functions within their orbit.

“What am I living for and what am I dying for are the same question.”

– Margaret Atwood, The Year of the Flood

A man said to the universe:

“Sir, I exist!”

“However,” replied the universe,

“The fact has not created in me

A sense of obligation.”

– Stephen Crane, War Is Kind and Other Poems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol. 2014;64:316–24.

    Article  PubMed  Google Scholar 

  2. Van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, et al. Global diversity of sponges (Porifera). PLoS One. 2012;7:e35105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, et al. Microbial diversity of marine sponges. In: Müller WEG, editor. Sponges (Porifera). Berlin/Heidelberg: Springer; 2003. p. 59–88.

    Chapter  Google Scholar 

  5. Webster NS, Taylor MW. Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol. 2012;14:335–346.1.

    Article  CAS  PubMed  Google Scholar 

  6. Douglas AE. Symbiotic interactions. Oxon Great Britain: Oxford University Press; 1994.

    Google Scholar 

  7. Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One. 2014;9:e93827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Woese CR. Bacterial evolution. Microbiol Rev. 1987;51:221–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pace NR. A molecular view of microbial diversity and the biosphere. Science. 1997;276:734–40.

    Article  CAS  PubMed  Google Scholar 

  10. Wilkinson CR, Nowak M, Austin B, Colwell RR. Specificity of bacterial symbionts in Mediterranean and Great Barrier reef sponges. Microb Ecol. 1981;7:13–21.

    Article  CAS  PubMed  Google Scholar 

  11. Futuyma D. Evolution. 2nd ed. Sunderland: Sinauer Assoc; 2009.

    Google Scholar 

  12. Colwell RR. Microbial biodiversity and biotechnology. In: Reaka-Kudla ML, Wilson DE, Wilson EO, editors. Biodiversity II. Washington, DC: Joseph Henry; 1997. p. 279–87.

    Google Scholar 

  13. Woese CR. A new biology for a new century. Microbiol Mol Biol R. 2004;68:173–86.

    Article  CAS  Google Scholar 

  14. Schloss PD, Handelsman J. Status of the microbial census. Microbiol Mol Biol Rev. 2004;68:686–91.

    Article  PubMed  PubMed Central  Google Scholar 

  15. HMP- The Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215–21.

    Article  CAS  Google Scholar 

  16. Smith PA. Can the bacteria in your gut explain your mood? New York Times, June 23 2015.

    Google Scholar 

  17. Dubilier N, McFall-Ngai M, Zhao L. Microbiology: create a global microbiome effort. Nature. 2015;526:631–4.

    Article  CAS  PubMed  Google Scholar 

  18. Reardon S. White house goes big on microbiome. Scientific American. http://www.scientificamerican.com/article/white-house-goes-big-on-microbiome-research/. March 2016.

  19. Casadevell A, Pirofski LA. Ditch the term pathogen. Nature. 2014;516:163.

    Google Scholar 

  20. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Google Scholar 

  21. Coyne MJ, Zitomersky NL, McGuire AM, Earl AM, Comstock LE. Evidence of extensive DNA transfer between Bacteroidales species within the human Gut. MBio. 2014;5:e01305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 2012;6:564–76.

    Article  CAS  PubMed  Google Scholar 

  23. Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.

    Article  CAS  PubMed  Google Scholar 

  24. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A. 2013;110:3229–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mindell DP. Phylogenetic consequences of symbioses: eukarya and eubacteria are not monophyletic taxa. Bio Systems. 1992;27:53–62.

    Article  CAS  PubMed  Google Scholar 

  26. Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10.

    Article  Google Scholar 

  27. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.

    Article  CAS  PubMed  Google Scholar 

  28. Bordenstein SR, Theis KR. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 2015;13:e1002226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freeman CJ, Easson CG, Baker DM. Metabolic diversity and niche structure in sponges from the Miskito Cays, Honduras. Hay M, ed. PeerJ. 2014;2:e695.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nyholm SV, McFall-Ngai MJ. The winnowing: establishing the squid-vibrio symbiosis. Nat Rev Microbiol. 2004;2:632–42.

    Article  CAS  PubMed  Google Scholar 

  31. Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010;18:455–63.

    Article  CAS  PubMed  Google Scholar 

  32. Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci. 2012;109:E1878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol. 2005;71:4840–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Horn H, Slaby BM, Jahn MT, Moitinhosilva L, Forster F, et al. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes. Front Microbiol. 2016;7:1751.

    Google Scholar 

  35. Reiswig HM. In situ pumping activities of tropical Demospongiae. Mar Biol. 1971;9:38–50.

    Article  Google Scholar 

  36. Reiswig HM. Particle feeding in natural populations of three marine demosponges. Biol Bull. 1971;141:568–91.

    Article  Google Scholar 

  37. Pile AJ, Patterson MR, Witman JD. In situ grazing on plankton <10 um by the boreal sponge Mycale lingua. Mar Ecol Prog Ser. 1996;141:95–102.

    Article  Google Scholar 

  38. Schönberg CHL. A history of sponge erosion: from past myths and hypotheses to recent approaches. In: Wisshak M, Tapanila L, editors. Current developments in bioerosion. Berlin/Heidelberg: Springer; 2008. p. 165–202.

    Chapter  Google Scholar 

  39. Chaves-Fonnegra A, Riegl B, Zea Z, Lopez JV, Giliam DS. Bleaching events regulate shifts from corals to excavating sponges in algae dominated reefs. Glob Chang Biol. 2017;24:773–85. https://doi.org/10.1111/gcb.13962.

    Article  PubMed  Google Scholar 

  40. de Goeij JM, van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AFPM, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc Nat Aca Sci USA. 2015;112:4381–6.

    Article  CAS  Google Scholar 

  42. Erwin DH, Valentine JW. The Cambrian explosion. The construction of animal biodiversity. Greenwood Village: Roberts and Company Publishers; 2013. p. 416.

    Google Scholar 

  43. Antcliffe JB, Callow RH, Brasier MD. Giving the early fossil record of sponges a squeeze. Biol Rev Camb Philos Soc. 2014;89:972–1004.

    Article  PubMed  Google Scholar 

  44. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 2008;452:745–9.

    Article  CAS  PubMed  Google Scholar 

  45. Haeckel E. Das Protestenreich. Leipzig: Gunther; 1878.

    Google Scholar 

  46. Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O, Philippe H, et al. Genomic data do not support comb jellies as the sister group to all other animals. Proc Natl Acad Sci. 2015;112:15402–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ryan JF, Pang K, Schnitzler CE, Nguyen A-D, Moreland RT, Simmons DK, et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 2013;342:1242592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Simion P, Philippe H, Baurain D, Jager M, Richter DJ, Di Franco A, et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol. 2017.; pii: S0960-9822 (17), 30199-9.

    Google Scholar 

  49. Whelan NV, Kocot KM, Moroz LL, Halanych KM. Error, signal, and the placement of Ctenophora sister to all other animals. Proc Nat Aca Sci USA. 2015;112:5773–8.

    Article  CAS  Google Scholar 

  50. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;510:109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lopez JV, McCarthy PJ, Janda KE, Willoughby R, Pomponi SA. Molecular techniques reveal wide phyletic diversity of heterotrophic microbes associated with the sponge genus Discodermia (Porifera: Demospongiae). Proceedings of the 5th International Sponge symposium. Mem Qld Mus. 1999;44:329–41.

    Google Scholar 

  52. Webster NS, Wilson KJ, Blackall LL, Hill RT. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol. 2001;67:434–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol. 2006;55:167–77.

    Article  CAS  PubMed  Google Scholar 

  54. Hill RT. Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery. In: Bull AT, editor. Microbial diversity and bioprospecting. Washington, DC: ASM Press; 2004.

    Google Scholar 

  55. Sfanos KAS, Harmody DK, McCarthy PJ, Dang P, Pomponi SA, Lopez JV. A molecular systematic survey of cultured microbial associates of deep water marine invertebrates. Syst Appl Microbiol. 2005;28:242–64.

    Article  CAS  PubMed  Google Scholar 

  56. Fieseler L, Horn M, Wagner M, Hentschel U. Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol. 2004;70:3724–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Montalvo NF, Davis J, Vicente J, Pittiglio R, Ravel J, Hill RT. Integration of culture-based and molecular analysis of a complex sponge-associated bacterial community. PLoS One. 2014;9:e90517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Olson JB, McCarthy PJ. Associated bacterial communities of two deep-water sponges. Aquat Microb Ecol. 2005;39:47–55.

    Article  Google Scholar 

  59. Mohamed NM, Colman AS, Tal Y, Hill RT. Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol. 2008a;10:2910–21.

    Article  CAS  PubMed  Google Scholar 

  60. Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT. Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol. 2008;74:1209–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mohamed NM, Rao V, Hamann MT, Kelly M, Hill RT. Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl Environ Microbiol. 2008;74:4133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Negandhi K, Blackwelder P, Ereskovsky AV, Lopez JV. Florida reef sponges harbor coral disease-associated bacteria. Symbiosis. 2010;51:117–29.

    Article  Google Scholar 

  63. White J, Patel J, Ottesen A, Arce C, Blackwelder P, Lopez JV. Pyrosequencing of microbes within Axinella corrugata sponges: diversity and seasonal variability. PLoS One. 2012;7:e38204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thomas T, Moitinho-Silva L, Lurgi M, Easson CG, Björk J, Astudillo C, et al. The global sponge microbiome: symbiosis insights derived from a basal metazoan phylum. Nat Commun. 2016;7:1–12.

    Google Scholar 

  65. Wilkinson CR. Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar Biol. 1978;49:177–85.

    Article  Google Scholar 

  66. Wilkinson CR. Net primary productivity in coral reef sponges. Science. 1983;219:410–2.

    Article  CAS  PubMed  Google Scholar 

  67. Wilkinson CR. Significance of microbial symbionts in sponge evolution and ecology. Symbiosis. 1987;4:135–46.

    Google Scholar 

  68. Wilkinson CR, Garrone R, Vacelet J. Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proc R Soc Lond B. 1984;220:519–28.

    Article  Google Scholar 

  69. Fiore CL, Baker DM, Lesser MP. Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen? PLoS One. 2013;8:e72961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shropshire JD, Bordenstein SR. Speciation by symbiosis: the microbiome and behavior. MBio. 2016;7:e01785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S, et al. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol. 2010;12:2070–82.

    Google Scholar 

  72. Reveillaud J, Maignien L, Murat EA, Huber JA, Apprill A, Sogin ML, et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 2014;8:1198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cassler M, Winegar R, McCarthy PJ, Pomponi SA, Peterson CL, Wright AE, et al. Use of Real-Time PCR to quantitate the unculturable heterotrophic bacterial community in deep sea marine sponges of the family Lithistidae. Microb Ecol. 2008;55:384–94.

    Google Scholar 

  74. Kieft TL, Simmons KA. Allometry of animal-microbe interactions and global census of animal-associated microbes. Proc Biol Sci. 2015;282:20150702.

    Article  PubMed  PubMed Central  Google Scholar 

  75. MacArthur RH, Wilson EO. The theory of island biogeography. Princeton: Princeton University Press; 1967. p. 20.

    Google Scholar 

  76. Oh S, Caro-Quintero A, Tsementzi D, DeLeon-Rodriguez N, Luo C, et al. Metagenomic insights into the evolution, function, and complexity of the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem. Appl Environ Microbiol. 2011;77:6000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wilson DS, Wilson EO. Rethinking the theoretical foundation of sociobiology. Q Rev of Biology. 2007;82:327–48.

    Article  Google Scholar 

  78. Dawkins R. The selfish gene. London: Oxford University Press; 1976.

    Google Scholar 

  79. Easson CG, Thacker RW. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front Microbiol. 2014;5:532.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dohrmann M, Wörheide G. Novel scenarios of early animal evolution–is it time to rewrite textbooks? Integr Comp Biol. 2013;53:503–11.

    Article  PubMed  Google Scholar 

  81. Webster NS, Thomas T. The sponge hologenome. MBio. 2016;7:e00135–16.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, et al. Dating the rise of atmospheric oxygen. Nature. 2004;427:117–20.

    Article  CAS  PubMed  Google Scholar 

  83. De Marais DJ. When did photosynthesis emerge on Earth? Science. 2000;289:1703–5.

    PubMed  Google Scholar 

  84. Goreau TF, Goreau NI. The physiology of skeletal formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol Bull. 1959;117:239–50.

    Article  CAS  Google Scholar 

  85. Stanley GD. Early history of scleractinian corals and its geological consequences. Geology. 1981;9:507–11.

    Article  Google Scholar 

  86. Pawlik JR, Burkepile DE, Thurber RV. Vicious circle. Altered carbon and nutrient cycling may explain the low resilience of Caribbean coral reefs. Bioscience. 2016;66:470–6.

    Article  Google Scholar 

  87. Zaneveld JR, Burkepile DE, Shantz AA, Pritchard, CE, Mcminds, R, Payet J. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun. 2016;7:11833.

    Google Scholar 

  88. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, et al. Global warming and recurrent mass bleaching of corals. Nature. 2017;543:373–7.

    Article  CAS  PubMed  Google Scholar 

  89. Thacker RW, Starnes S. Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Mar Biol. 2003;142:643–8.

    Article  CAS  Google Scholar 

  90. Thacker RW. Impacts of shading on sponge-cyanobacteria symbioses: a comparison between host-specific and generalist associations. Integr Comp Biol. 2005;45:369–76.

    Article  PubMed  Google Scholar 

  91. Conway CA, Esiobu N, Lopez JV. Co-cultures of Pseudomonas aeruginosa and Roseobacter denitrificans reveal shifts in gene expression levels compared to solo cultures. Sci World J. 2012;2012:120108.

    Article  CAS  Google Scholar 

  92. Freeman CJ, Thacker RW. Complex interactions between marine sponges and their symbiotic microbial communities. Limnol Oceanogr. 2011;56:1577–86.

    Article  Google Scholar 

  93. Simpson TL. The cell biology of sponges. New York: Springer; 1984.

    Book  Google Scholar 

  94. Mohri K, Nakatsukasa M, Masuda Y, Agata K, Funayama N. Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Dev Dyn. 2008;237(10):3024–39.

    Article  CAS  PubMed  Google Scholar 

  95. Voigt O, Adamski M, Sluzek K, Adamska M. Calcareous sponge genomes reveal complex evolution of α-carbonic anhydrases and two key biomineralization enzymes. BMC Evol Biol. 2014;14:230.

    Google Scholar 

  96. Uriz MJ, Agell G, Blanquer A, Turon X, Casamayor EO. Endosymbiotic calcifying bacteria: a new cue to the origin of calcification in metazoa? Evolution. 2012;66:2993–9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Santavy DL, Willenz P, Colwell RR. Phenotypic study of bacteria associated with the Caribbean sclerosponge, Ceratoporella nicholsoni. Appl Environ Microbiol. 1990;56:1750–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, et al. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull. 2014;227:78–88.

    Article  PubMed  Google Scholar 

  99. Moitinho-Silva L, Steinert G, Nielsen S, Hardoim CCP, Wu Y-C, McCormack GP, et al. Predicting the HMA-LMA status in marine sponges by machine learning. Front Microbiol. 2017;8:752.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Leys SP, Hill A. The physiology and molecular biology of sponge tissues. Adv Mar Biol. 2012;62:1.

    Article  PubMed  Google Scholar 

  101. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466:720–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Riesgo A, Peterson K, Richardson C, Heist T, Strehlow B, McCauley M, et al. Transcriptomic analysis of differential host gene expression upon uptake of symbionts: a case study with Symbiodinium and the major bioeroding sponge Cliona varians. BMC Genomics. 2014;16:376.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Watnick P, Kolter R. Biofilm, city of microbes. J Bacteriol. 2000;182:2675–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2:95–10.

    Article  CAS  PubMed  Google Scholar 

  105. Ehrlich GD, Ahmed A, Earl J, Hiller NL, Costerton JW, Stoodley P, et al. The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes. FEMS Immunol Med Microbiol. 2010;59:269–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Estrela S, Kerr B, Morris JJ. Transitions in individuality through symbiosis. Curr Opin Microbiol. 2016;31:191–8.

    Article  PubMed  Google Scholar 

  107. Wagner-Döbler I. Biofilm transplantation in the deep sea. Mol Ecol. 2016;25:1905–7.

    Article  CAS  PubMed  Google Scholar 

  108. Frølund B, Palmgren R, Keiding K, Nielsen PH. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996;30:1749–58.

    Article  Google Scholar 

  109. Crisp DJ, Ryland JS. Influence of filming and of surface texture on the settlement of marine organisms. Nature. 1960;185:119.

    Article  Google Scholar 

  110. Whalan S, Webster NS. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean. Sci Rep. 2014;4:4072.

    Google Scholar 

  111. Sneed JM, Sharp KH, Ritchie KB, Paul VJ. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc R Soc Biol. 2014;281:20133086.

    Article  CAS  Google Scholar 

  112. Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol. 2008;6:339–48.

    Article  CAS  PubMed  Google Scholar 

  113. Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011;26:158.

    Google Scholar 

  114. Angles ML,Marshall KC, Goodman AE. Plasmid transfer between marine bacteriain the aqueous phase and biofilms in reactormicrocosms. Appl Environ Microbiol. 1993; 59:843–50.

    Google Scholar 

  115. Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A et al. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 2010;4:1557–67.

    Article  CAS  PubMed  Google Scholar 

  116. Dunlap PV, Takami M, Wakatsuki S, Hendry TA, Sezaki K, Fukui A. Inception of bioluminescent symbiosis in early developmental stages of the deep-sea fish, Coelorinchus kishinouyei (Gadiformes: Macrouridae). Ichthyol Res. 2014;61:59–67.

    Article  Google Scholar 

  117. Kleiner M, Young JC, Shah M, VerBerkmoes NC, Dubilier N. Metaproteomics reveals abundant transposase expression in mutualistic endosymbionts. MBio. 2013;4:e00223–13.

    Google Scholar 

  118. Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. elife. 2012;1:e00013.

    Google Scholar 

  119. Díez-Vives C, Moitinho-Silva L, Nielsen S, Reynolds D, Thomas T. Expression of eukaryotic-like protein in the microbiome of sponges. Mol Ecol. 2017;26:1432–51.

    Article  CAS  PubMed  Google Scholar 

  120. Nguyen MT, Liu M, Thomas T. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol Ecol. 2014;23:1635–45.

    Article  CAS  PubMed  Google Scholar 

  121. Exposito JY, Garrone R. Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. Proc Natl Acad Sci U S A. 1990;87:6669–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Keeley FW, Mecham R. Evolution of extracellular matrix. New York: Springer; 2013.

    Book  Google Scholar 

  123. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci U S A. 2010;107:8818–23.

    Article  CAS  Google Scholar 

  124. Exposito JY, Valcourt U, Cluzel C, Lethias C. The Fibrillar collagen family. Int J Mol Sci. 2010;11:407–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. King N, Westbrook J, Young SL, Kuo A, Abedin M, Chapman J, et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008;451:783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Matz C, Webb JS, Schupp PJ, Phang SY, Penesyan A, Egan S, et al. Marine biofilm bacteria Evade eukaryotic predation by targeted chemical defense. PLoS One. 2008;3:e2744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bonner JT. The origins of multicellularity. Integr Biol. 1998;1:27–36.

    Article  Google Scholar 

  128. Margulis L. Origin of eukaryotic cells. New Haven: Yale University Press; 1971.

    Google Scholar 

  129. King N. The unicellular ancestry review of animal development. Dev Cell. 2004;7:313–25.

    Article  CAS  PubMed  Google Scholar 

  130. Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I. The origin of metazoa: a unicellular perspective. Nat Rev Genet. 2017;18:498–512.

    Article  CAS  PubMed  Google Scholar 

  131. Brock DA, Douglas TE, Queller DC, Strassmann JE. Primitive agriculture in a social amoeba. Nature. 2011;469:393–6.

    Article  CAS  PubMed  Google Scholar 

  132. Margulis L. Symbiosis in cell evolution. San Francisco: W.H. Freeman and Co; 1981.

    Google Scholar 

  133. Brucker RM, Bordenstein SR. The capacious hologenome. Zoology (Jena). 2013;116:260–1.

    Article  Google Scholar 

  134. Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev. 2008;32:723–35.

    Article  CAS  PubMed  Google Scholar 

  135. Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, et al. Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics. 2016;17:158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Moran NA, Sloan DB. The hologenome concept: helpful or hollow? PLoS Biol. 2015;13:e1002311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mueller WEG. Molecular phylogeny of eumetazoa: genes in sponges (Porifera) give evidence for monophyly of animals. In: Mueller WEG, editor. Molecular evolution: evidence for monophyly of metazoa, Progress in molecular and subcellular biology, vol. 19. Berlin: Springer; 1998. p. 89–132.

    Chapter  Google Scholar 

  138. Grosberg RK, Strathmann RR. The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst. 2007;38:621–54.

    Article  Google Scholar 

  139. Britstein M, Devescovi G, Handley KM, Malik A, Haber M, Saurav K, et al. A new N-acyl homoserine lactone synthase in an uncultured symbiont of the Red Sea sponge Theonella swinhoei. Appl Environ Microbiol. 2015;8:1274–85.

    Google Scholar 

  140. Hardoim CP, Costa R. Microbial communities and bioactive compounds in marine sponges of the family Irciniidae. Mar Drugs. 2014;12:5089–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 2004;4:669–85.

    Article  Google Scholar 

  142. Greuter D, Loy A, Horn M, Rattei T. ProbeBase—an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Res. 2016;44:D586–9.

    Article  CAS  PubMed  Google Scholar 

  143. Loy A, Maixner F, Wagner M, Horn M. probeBase – an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res. 2007;35:D800–4.

    Article  CAS  PubMed  Google Scholar 

  144. Manz W, Arp G, Schumann-Kindel G, Szewzyk U, Reitner J. Widefield, deconvolution epifluorescence microscopy combined with fluorescence in situ hybridization reveals the spatial arrangement of bacteria in sponge tissue. J Microbiol Methods. 2000;40:125–34.

    Article  CAS  PubMed  Google Scholar 

  145. Behnam F, Vilcinskas A, Wagner M, Stoecker KA. Straightforward DOPE (double labeling of oligonucleotide probes)-FISH (fluorescence in situ hybridization) method for simultaneous multicolor detection of six microbial populations. Appl Environ Microbiol. 2012;78:5138–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Laming SR, Duperron S. A correlative light-electron microscopy (CLEM) protocol for the identification of bacteria in animal tissue, exemplified by methanotrophic symbionts of deep-sea mussels. In: McGenity T, Timmis K, Nogales B, editors. Hydrocarbon and lipid microbiology protocols. Berlin/Heidelberg: Springer Protocols Handbooks Springer; 2015. p. 163–74.

    Chapter  Google Scholar 

  148. Valm AM, Welch JLM, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci U S A. 2011;108:4152–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nikolakakis K, Lehnert E, McFall-Ngai MJ, Ruby EG. Use of hybridization chain reaction-fluorescent in situ hybridization to track gene expression by both partners during initiation of symbiosis. Appl Environ Microbiol. 2015;81:4728–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chowdhury C, Sinha S, Chun S, Yeates TO, Bobik TA. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev. 2014;78:438–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kerfeld CA, Erbilgin O. Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol. 2015;23:22–34.

    Article  CAS  PubMed  Google Scholar 

  152. Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, et al. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J. 2010;5:61–70.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kamke J, Rinke C, Schwientek P, Mavromatis K, Ivanova N, Sczyrba A, et al. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features. PLoS One. 2014;9:e87353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to deepwater horizon oil spill. ISME J. 2012;6:1715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Marr C, Zhou JX, Huang S. Single-cell gene expression profiling and cell state dynamics: collecting data, correlating data points and connecting the dots. Curr Opin Biotechnol. 2016;39:207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jahn MT, Markert SM, Ryu T, Ravasi T, Stigloher C, Hentschel U, et al. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Sci Rep. 2016;6:35860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fry B. Stable isotope ecology. New York: Springer; 2006.

    Book  Google Scholar 

  158. Herrmann AM, Ritz K, Nunan N, Clode PL, Pett-Ridge J, Kilburn MR, et al. Nano-scale secondary ion mass spectrometry: a new analytical tool in biogeochemistry and soil ecology: a review article. Soil Biol Biochem. 2007;39:1835–50.

    Article  CAS  Google Scholar 

  159. Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci. 2008;105:17861–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Musat N, Musat F, Weber PK, Pett-Ridge J. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol. 2016;41:114–21.

    Article  CAS  PubMed  Google Scholar 

  161. Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look @ NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.

    Article  CAS  PubMed  Google Scholar 

  162. Eichorst SA, Strasser F, Woyke T, Schintlmeister A, Wagner M, Woebken D. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol Ecol. 2015;91:fiv106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. da Fonseca RR, Albrechtsen A, Themudo GE, Ramos-Madrigal J, Sibbesen JA, Maretty L, et al. Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar Genomics. 2016;30:3–13.

    Article  PubMed  Google Scholar 

  164. Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953;171:737–8.

    Article  CAS  PubMed  Google Scholar 

  165. Judson HF. The eighth day of creation: makers of the revolution in biology. New York: Cold Spring Harbor Laboratory Press; 1996.

    Google Scholar 

  166. Mukherjee S. The gene: an intimate history. New York: Scribner; 2016.

    Google Scholar 

  167. Shendure J, Lieberman AE. The expanding scope of DNA sequencing. Nat Biotechnol. 2012;30:1084–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big data: astronomical or genomical? PLoS Biol. 2015;13:e1002195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Barshis DJ, Ladner JT, Oliver TA, Palumbi SR. Lineage-specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host. Mol Biol Evol. 2014;31:1343–52.

    Article  CAS  PubMed  Google Scholar 

  170. Chadwick DJ, Whelan J. Secondary metabolites: their function and evolution. Chichester: Ciba Foundation/Wiley; 1992.

    Google Scholar 

  171. Niehaus TD, Thamm AM, de Crécy-Lagard V, Hanson AD. Proteins of unknown biochemical function: a persistent problem and a roadmap to help overcome it. Plant Physiol. 2015;169:1436–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–69.

    Article  CAS  Google Scholar 

  173. The Gene Ontology Consortium, Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017;45:D507–16.

    Article  CAS  PubMed  Google Scholar 

  175. Gene Ontology Consortium. The gene ontology in 2010: extensions and refinements. Nucleic Acids Res. 2010;38:D331–5.

    Article  CAS  Google Scholar 

  176. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.

    Article  CAS  PubMed  Google Scholar 

  177. Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet. 2004;38:525–52.

    Article  CAS  PubMed  Google Scholar 

  178. Tringe SG, Rubin EM. Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet. 2005;6:805–14.

    Article  CAS  PubMed  Google Scholar 

  179. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW. Comparative metagenomics of microbial communities. Science. 2005;308:554–7.

    Article  CAS  PubMed  Google Scholar 

  180. Kennedy J, Flemer B, Jackson SA, Lejon DPH, Morrissey JP, O’Gara F, et al. Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs. 2010;8:608–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sogin ML, Morrison HG, Huber JA, Mark WD, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored rare biosphere. Proc Natl Acad Sci U S A. 2006;103(32):12115–20. Epub 2006 Jul 31.

    Article  CAS  Google Scholar 

  182. Giovannoni SJ, Rappe MS. Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman DL, editor. Microbial ecology of the oceans. New York: Wiley-Liss Inc; 2000. p. 47–84.

    Google Scholar 

  183. Hiraoka S, Yang CC, Iwasaki W. Metagenomics and bioinformatics in microbial ecology: current status and beyond. Microbiol Environ. 2016;31:204–12.

    Article  Google Scholar 

  184. Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003;57:369–94.

    Article  CAS  PubMed  Google Scholar 

  185. Sharp KH, Davidson SK, Haygood MG. Localization of ‘Candidatus Endobugula sertula’ and the bryostatins throughout the life cycle of the bryozoan Bugula neritina. ISME J. 2007;1:693–702.

    Article  PubMed  Google Scholar 

  186. Delong EF. The microbial ocean from genomes to biomes. Nature. 2009;459:200–6.

    Article  CAS  PubMed  Google Scholar 

  187. Brown TA. Genomes. 3rd ed. Oxford: Wiley-Liss; 2007.

    Google Scholar 

  188. Della Sala G, Hochmuth T, Costantino V, Teta R, Gerwick W, Gerwick L, et al. Polyketide genes in the marine sponge Plakortis simplex: a new group of mono-modular type I polyketide synthases from sponge symbionts. Environ Microbiol Rep. 2013;5:809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, Oldham NJ, et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science. 2012;338:387–90.

    Article  CAS  PubMed  Google Scholar 

  190. Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci U S A. 2004;101:16222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol. 2005;71:4840–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sudek S, Lopanik NB, Waggoner LE, Hildebrand M, Anderson C, Liu H, et al. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J Nat Prod. 2007;70:67–74.

    Article  CAS  PubMed  Google Scholar 

  193. Wilson MC, Piel J. Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol. 2013;20:636–47.

    Article  CAS  PubMed  Google Scholar 

  194. Fiore CL, Labrie M, Jarett JK, Lesser MP. Transcriptional activity of the giant barrel sponge, Xestospongia muta holobiont: molecular evidence for metabolic interchange. Front Microbiol. 2015;6:364.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Mori T, Iwamoto K, Wakaoji S, Araie H, Kohara Y, Okamura Y, et al. Characterization of a novel gene involved in cadmium accumulation screened from sponge-associated bacterial metagenome. Gene. 2016;576:618–25.

    Article  CAS  PubMed  Google Scholar 

  196. Nakashima Y, Egami Y, Kimura M, Wakimoto T, Abe I. Metagenomic analysis of the sponge Discodermia reveals the production of the cyanobacterial natural product kasumigamide by ‘Entotheonella’. PLoS One. 2016;11:e0164468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Graf J. Lessons from digestive-tract symbioses between bacteria and invertebrates. Annu Rev Microbiol. 2016;70:375–93.

    Article  CAS  PubMed  Google Scholar 

  198. Selvin J, Kennedy J, Lejon DP, Kiran GS, Dobson AD. Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb Cell Factories. 2012;1:72.

    Article  CAS  Google Scholar 

  199. Reynolds D, Thomas T. Evolution and function of eukaryotic-like proteins from sponge symbionts. Mol Ecol. 2016;25:5242–53.

    Article  CAS  PubMed  Google Scholar 

  200. Erwin PM, Coma R, López-Sendino P, Serrano E, Ribes M. Stable symbionts across the HMA-LMA dichotomy: low seasonal and interannual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol Ecol. 2015;91:fiv115.

    Article  CAS  PubMed  Google Scholar 

  201. Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. 2016;8:e1364.

    Article  CAS  Google Scholar 

  202. Diehl AG, Boyle AP. Deciphering ENCODE. Trends Genet. 2016;32:238–49.

    Google Scholar 

  203. ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Google Scholar 

  204. Qu H, Fang X. A brief review on the Human Encyclopedia of DNA Elements (ENCODE) project. Genomics Proteomics Bioinform. 2013;11:135–41.

    Article  CAS  Google Scholar 

  205. Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E. On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol. 2013;5:578–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Graur D, Zheng Y, Azevedo RB. An evolutionary classification of genomic function. Genome Biol Evol. 2015;7:642–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kellis M, Wold B, Snyder MP, Bernstein BE, Kundajea A, Marinov GK, et al. Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A. 2014;111:6131–8.

    Article  CAS  Google Scholar 

  208. Francis WR, Woerheide G. Animals actively use at least half of the genome. BioRxiv. 2016:068627.

    Google Scholar 

  209. Tanzer A, Riester M, Hertel J, Bermudez-Santana, Gorodkin J, Hofacker, et al. Evolutionary genomics of microRNAs and their relatives. In: Caetano-Anoles G, editor. Evolutionary genomics and systems biology. Oxford: Wiley; 2010.

    Chapter  Google Scholar 

  210. Tarver JE, Sperling EA, Nailor A, Heimberg AM, Robinson JM, King BL, et al. miRNAs: small genes with big potential in metazoan phylogenetics. Mol Biol Evol. 2013;30:2369–82.

    Article  CAS  PubMed  Google Scholar 

  211. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. John DE, Zielinski BL, Paul JH. Creation of a pilot metatranscriptome library from eukaryotic plankton of a eutrophic bay (Tampa Bay, Florida). Limnol Oceanogr Methods. 2009;7:249–59.

    Article  CAS  Google Scholar 

  213. McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci U S A. 2010;107:16420–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Moitinho-Silva L, Díez-Vives C, Batani G, Esteves AI, Jahn MT, Thomas T. Integrated metabolism in sponge-microbe symbiosis revealed by genome-centered metatranscriptomics. ISME J. 2017;11:1651–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Bashiardes S, Zilberman-Schapira G, Elinav E. Use of metatranscriptomics in microbiome research. Bioinform Biol Insights. 2016;10:19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Versluis D, D’Andrea MM, Ramiro Garcia J, Leimena MM, Hugenholtz F, Zhang J. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions. Sci Rep. 2015;5:11981.

    Article  PubMed  PubMed Central  Google Scholar 

  217. McFall-Ngai M. Divining the essence of symbiosis: insights from the squid-vibrio model. PLoS Biol. 2014;12:e1001783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Gilbert JA, Quinn RA, Debelius JX, Z Z, Morton J, Garg N, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. 2016;535:94–103.

    Article  CAS  PubMed  Google Scholar 

  219. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm. 2008;363:1–25.

    Article  CAS  PubMed  Google Scholar 

  221. Johnson AD, O’Donnell CJ. An open access database of genome-wide association results. BMC Med Genet. 2009;10:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Gilbert JA, Meyer F, Antonopoulos D, Balaji P, Brown CT, Brown CT, et al. Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Stand Genomic Sci. 2010;3:243–8.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Seneca FO, Palumbi SR. The role of transcriptome resilience in resistance of corals to bleaching. Mol Ecol. 2015;24:1467–84.

    Article  PubMed  Google Scholar 

  224. Ruiz-Jones LJ, Palumbi SR. Transcriptome-wide changes in coral gene expression at noon and midnight under field conditions. Biol Bull. 2015;228:227–41.

    Article  CAS  PubMed  Google Scholar 

  225. Bay RA, Palumbi SR. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol Evol. 2015;7:1602–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Guzman C, Conaco C. Gene expression dynamics accompanying the sponge thermal stress response. PLoS One. 2016;11:e0165368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Hintzsche JD, Robinson WA, Tan AC. A survey of computational tools to analyze and interpret whole exome sequencing data. Int J Genomics. 2016;2016:7983236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Markowetz F. All biology is computational biology. PLoS Biol. 2017;15:e2002050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Har JY, Helbig T, Lim JH, Fernando SC, Reitzel AM, Penn K, et al. Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression. Front Microbiol. 2015;6:818.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Kumar D, Bansal G, Narang A, Basak T, Abbas T, Dash D. Integrating transcriptome and proteome profiling: strategies and applications. Proteomics. 2016;16:2533–44.

    Article  CAS  PubMed  Google Scholar 

  233. Rocha-Martin J, Harrington C, Dobson ADW, O’Gara F. Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs. 2014;12:3516–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Larsen PE, Dai Y. Metabolome of human gut microbiome is predictive of host dysbiosis. Gigascience. 2015;4:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Larsen P, Collart F, Field D, Meyer F, Keegan K, Henry C, et al. Predicted relative metabolomic turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. Microb Inf Exp. 2011;1:4.

    Article  Google Scholar 

  236. Smith E. De novo transcriptome analysis of the marine sponge Cinachyrella spp: a potential model organism for oil and dispersant ecotoxicology. Masters thesis. Nova Southeastern University Oceanographic Center. 2013.

    Google Scholar 

  237. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Yilmaz P, Yarza P, Rapp JZ, Glöckner FO. Expanding the world of marine bacterial and archaeal clades. Front Microbiol. 2016;6:1524.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Liu H, Guo X, Gooneratne R, Lai R, Zeng C, Zhan F, et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep. 2016;6:24340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Alma’abadi AD, Gojobori T, Mineta K. Marine metagenome as a resource for novel enzymes. Genomics Proteomics Bioinform. 2015;13:290–5.

    Article  Google Scholar 

  241. Kamisoglu K, Acevedo A, Almon RR, Coyle S, Corbett S, Dubois DC, et al. Understanding physiology in the continuum: integration of information from multiple -omics levels. Front Pharmacol. 2017;8:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Li Z, Wang Y, Yao Q, Justice NB, Ahn T-H, Xu D, et al. Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community. Nat Commun. 2014;5:4405.

    Article  CAS  PubMed  Google Scholar 

  243. Xiong W, Abraham PE, Li Z, Pan C, Hettich RL. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics. 2015;15:3424–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Wang DZ, Kong LF, Li YY, Xie ZX. Environmental microbial community proteomics: status, challenges and perspectives. Int J Mol Sci. 2016;17:E1275.

    Article  PubMed  Google Scholar 

  245. Sowell SM, Abraham PE, Shah M, Verberkmoes NC, Smith DP, Barofsky DF, et al. Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J. 2011;5:856–65.

    Article  CAS  PubMed  Google Scholar 

  246. Slattery M, Ankisetty S, Corrales J, Marsh-Hunkin KE, Gochfeld DJ, Willett KL, et al. Marine proteomics: a critical assessment of an emerging technology. J Nat Prod. 2012;75:1833–77.

    Article  CAS  PubMed  Google Scholar 

  247. Barghi N, Concepcion GP, Olivera BM, Lluisma AO. Comparison of the venom peptides and their expression in closely related conus species: insights into adaptive post-speciation evolution of conus exogenomes. Genome Biol Evol. 2015;7:1797–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. GIGA Community of Scientists (COS). The global invertebrate genome alliance (GIGA): developing community resources to study diverse invertebrates. J Heredity. 2014;105:1–18.

    Article  CAS  Google Scholar 

  249. Jensen PR, Mincer TJ, Williams PG, Fenical W. Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek. 2005;87:43–8.

    Article  CAS  PubMed  Google Scholar 

  250. Engel S, Jensen PR, Fenical W. Chemical ecology of marine microbial defense. J Chem Ecol. 2002;28:1971–85.

    Article  CAS  PubMed  Google Scholar 

  251. Trindade M, van Zyl LJ, Navarro-Fernández J, Abd Elrazak A. Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol. 2015;6:890.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Ziemert N, Lechner A, Wietz M, Millán-Aguiñaga N, Chavarria KL, Jensen PR. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci U S A. 2014;111:E1130–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Berdy J. Bioactive microbial metabolites: a personal view. J Antibiot. 2005;58:1–26.

    Article  CAS  Google Scholar 

  254. Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR. Marine natural products. Nat Prod Rep. 2015;32:116–211.

    Article  CAS  PubMed  Google Scholar 

  255. Imhoff JF. Natural products from marine fungi--still an underrepresented resource. Mar Drugs. 2016;14:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Tyc O, Song C, Dickschat JS, Vos M, Garbeva P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 2016;25:280–92.

    Article  CAS  PubMed  Google Scholar 

  257. Gomes NG, Dasari R, Chandra S, Kiss R, Kornienko A. Marine invertebrate metabolites with anticancer activities: solutions to the “supply problem”. Mar Drugs. 2016;14:E98.

    Article  CAS  PubMed  Google Scholar 

  258. Hoppers A, Stoudenmire J, Wu S, Lopanik NB. Antibiotic activity and microbial community of the temperate sponge, Haliclona sp. J Appl Microbiol. 2015;118:419–30.

    Article  CAS  PubMed  Google Scholar 

  259. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517:455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kaeberlein T, Lewis K, Epstein SS. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science. 2002;296:1127–9.

    Article  CAS  PubMed  Google Scholar 

  261. Donia MS, Fricke WF, Partensky F, Cox J, Elshahawi SI, White JR, et al. Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proc Natl Acad Sci U S A. 2011;108:E1423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Piel J. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem. 2006;13:39–50.

    Article  CAS  PubMed  Google Scholar 

  263. Rath CM, Janto B, Earl J, Ahmed A, Hu FZ, Hiller L, et al. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol. 2011;6:1244–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Mackay HJ, Twelves CJ. Targeting the protein kinase C family: are we there yet? Nat Rev Cancer. 2007;7:554–62.

    Article  CAS  PubMed  Google Scholar 

  265. Mathew M, Lopanik NB. Host differentially expressed genes during association with its defensive endosymbiont. Biol Bull. 2014;226:152–63.

    Article  CAS  PubMed  Google Scholar 

  266. Stone MJ, Williams DH. On the evolution of functional secondary metabolites (natural products). Mol Microbiol. 1992;6:29–34.

    Article  CAS  PubMed  Google Scholar 

  267. Garson MJ. Biosynthesis of sponge secondary metabolites: why is it important? In: Van Soest RWM, Van Kempen TMG, Braekman J-C, editors. Sponges in time and space. Roterdam: AA Balkema; 1994. p. 427–40.

    Google Scholar 

  268. Pomponi SA. The bioprocess–technological potential of the sea. J Biotechnol. 1999;70:5–13.

    Article  CAS  Google Scholar 

  269. Hamada T, Matsunaga S, Yano G, Fusetani NJ. Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoei. Am Chem Soc. 2005;127:110.

    Article  CAS  Google Scholar 

  270. Helf M, Jud A, Piel J. Enzyme from an uncultivated sponge bacterium catalyzes S-methylation in a ribosomal peptide. Chem Bio Chem. 2017;18:444–50.

    Article  CAS  PubMed  Google Scholar 

  271. Lackner G, Peters EE, Helfrich EJ, Piel J. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc Natl Acad Sci U S A. 2017;114:E347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Kubanek J, Fenical W, Pawlik JR. New antifeedant triterpene glycosides from the Caribbean sponge Erylus formosus. Nat Prod Lett. 2001;15:275–85.

    Article  CAS  PubMed  Google Scholar 

  273. Roué M, Quévrain E, Domart-Coulon I, Bourguet-Kondracki ML. Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products. Nat Prod Rep. 2012;29:739–51.

    Article  CAS  PubMed  Google Scholar 

  274. Loh TL, Pawlik JR. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc Natl Acad Sci U S A. 2014;111:4151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Gunasekera SP, Gunasekera M, Longley R, Schulte G. Discodermolide, a new bioactive polyhydroxylated lactone from the marine sponge, Discodermia dissoluta. J Organomet Chem. 1991;55:4912.

    Article  Google Scholar 

  276. Longley RE, Caddigan D, Harmody D, Gunasekera M, Gunasekera SP. Discodermolide – a new, marine-derived immunosuppressive compound. II. In vivo studies. Transplantation. 1991;52:656–61.

    Article  CAS  PubMed  Google Scholar 

  277. Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov. 2009;8:69.

    Article  CAS  PubMed  Google Scholar 

  278. Freeman MF, Helf MJ, Bhushan A, Morinaka BI, Piel J. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat Chem. 2017;9:387–95.

    Article  CAS  PubMed  Google Scholar 

  279. Goffredi SK, Yi H, Zhang Q, Klann JE, Struve IA, Vrijenhoek RC, et al. Genomic versatility and functional variation between two dominant heterotrophic symbionts of deep-sea Osedax worms. ISME J. 2013;8:908–24.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Hendry T, Freed L, Fader D, Fenolio D, Lopez J. Recently evolved host dependence in the luminous symbionts of deep sea anglerfish. mBio. 2018;9:e01033-18.

    Google Scholar 

  281. Klose J, Polz MF, Wagner M, Schimak MP, Gollner S, Bright M. Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population. Proc Natl Acad Sci U S A. 2015;112:11300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Haddock SH, Moline MA, Case JF. Bioluminescence in the sea. Annu Rev Mar Sci. 2010;2:443–93.

    Article  Google Scholar 

  283. Nagasawa H. The molecular mechanism of calcification in aquatic organisms. Biosci Biotechnol Biochem. 2013;77:1991–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Susan Sennett, FAU at Harbor Branch Oceanographic Institute, for the archived SEM micrographs. I also thank Dr. Peter Larsen for his PRMT analyses of preliminary RNA-seq data. Part of the preliminary data was also partly supported by a Year 1 BP Gulf of Mexico Research Initiative grant to JVL by the Florida Institute of Oceanography. I thank the following colleagues for feedback on early drafts of the manuscript: Dr. Omar Eldekar, Dr. Cole Easson, and Dr. Hidetoshi Urekawa. I am also grateful to Amy Doyle for final proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose V. Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopez, J.V. (2019). After the Taxonomic Identification Phase: Addressing the Functions of Symbiotic Communities Within Marine Invertebrates. In: Li, Z. (eds) Symbiotic Microbiomes of Coral Reefs Sponges and Corals. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1612-1_8

Download citation

Publish with us

Policies and ethics