Other Precipitating Factors for AECHB

  • Bao-Hong Wang
  • Jing Guo
  • Lan-Juan LiEmail author
  • Tao Chen
  • Chun-Xia Guo
  • Yong-Wen He


This chapter describes the precipitating factors involved in AECHB and HBV ACLF, including discussion of gender, age, underlined chronic diseases other than CHB, intestinal microencology, liver fibrosis/cirrhosis, and HCC.
  1. 1.

    Several host factors, including gender, age, underlying diseases (such as fatty liver disease, diabetes, hyperthyroidism, connective tissue disease, pregnancy, and surgery), may influence the occurrence and development of severe hepatitis B.

  2. 2.

    Functional damage to the intestinal barrier and changes in microecology may excessively activate the immune system, aggravate liver cell apoptosis and necrosis, and promote the development of severe hepatitis B and its complications.

  3. 3.

    Liver fibrosis and cirrhosis have a major effect on the development of severe hepatitis B. Pathological changes in liver fibrosis, abnormal hemodynamics, liver immune state and complication scan all affect the occurrence, development and prognosis of severe chronic hepatitis B.

  4. 4.

    HBV progression, complications of liver cancer, treatment related damage, and HBV reactivation all can cause progressive liver damage, leading to the exacerbation of chronic hepatitis B, and have a negative effect on patient’s prognosis.

  5. 5.

    Co-infection with other pathogens (especially other hepadnaviruses) is the most frequent factor inducing severe hepatitis B. Various hepatotoxins (including chemicals, toxins, alcohol, and drugs) can cause severe hepatitis B.



  1. 1.
    Katoonizadeh A, Laleman W, Verslype C, Wilmer A, Maleux G, Roskams T, et al. Early features of acute-on-chronic alcoholic liver failure: a prospective cohort study. Gut. 2010;59:1561–9.CrossRefGoogle Scholar
  2. 2.
    Jalan R, Gines P, Olson JC, Mookerjee RP, Moreau R, Garcia-Tsao G, et al. Acute-on chronic liver failure. J Hepatol. 2012;57:1336–48.CrossRefGoogle Scholar
  3. 3.
    Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013;144:1426–1437, 1437 e1421–1429.Google Scholar
  4. 4.
    Verbeke L, Nevens F, Laleman W. Bench-to-beside review: acute-on-chronic liver failure - linking the gut, liver and systemic circulation. Crit Care. 2011;15:233.CrossRefGoogle Scholar
  5. 5.
    Baohong W, Mingfei Y, Zongxin L, Lanjuan L. The human microbiota in health and disease. Engineering. 2017;3(1):71–82.CrossRefGoogle Scholar
  6. 6.
    Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep. 2016;6:32002.CrossRefGoogle Scholar
  7. 7.
    Gupta A, Dhiman RK, Kumari S, Rana S, Agarwal R, Duseja A, et al. Role of small intestinal bacterial overgrowth and delayed gastrointestinal transit time in cirrhotic patients with minimal hepatic encephalopathy. J Hepatol. 2010;53:849–55.CrossRefGoogle Scholar
  8. 8.
    Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54:562–72.CrossRefGoogle Scholar
  9. 9.
    Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60:940–7.CrossRefGoogle Scholar
  10. 10.
    Chen Y, Guo J, Qian G, Fang D, Shi D, Guo L, et al. Gut dysbiosis in acute-on-chronic liver failure and its predictive value for mortality. J Gastroenterol Hepatol. 2015;30:1429–37.CrossRefGoogle Scholar
  11. 11.
    Osman N, Adawi D, Ahrne S, Jeppsson B, Molin G. Endotoxin- and D-galactosamine-induced liver injury improved by the administration of Lactobacillus, Bifidobacterium and blueberry. Dig Liver Dis. 2007;39:849–56.CrossRefGoogle Scholar
  12. 12.
    Chen C, Li L, Wu Z, Chen H, Fu S. Effects of lactitol on intestinal microflora and plasma endotoxin in patients with chronic viral hepatitis. J Infect. 2007;54:98–102.CrossRefGoogle Scholar
  13. 13.
    Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59–64.CrossRefGoogle Scholar
  14. 14.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.CrossRefGoogle Scholar
  15. 15.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.CrossRefGoogle Scholar
  16. 16.
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.CrossRefGoogle Scholar
  17. 17.
    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.CrossRefGoogle Scholar
  18. 18.
    O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93.CrossRefGoogle Scholar
  19. 19.
    Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci. 2015;16:7493–519.CrossRefGoogle Scholar
  20. 20.
    Janssen AW, Kersten S. The role of the gut microbiota in metabolic health. FASEB J. 2015;29:3111–23.CrossRefGoogle Scholar
  21. 21.
    Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012;27:201–14.CrossRefGoogle Scholar
  22. 22.
    Li YT, Wang L, Chen Y, Chen YB, Wang HY, Wu ZW, et al. Effects of gut microflora on hepatic damage after acute liver injury in rats. J Trauma. 2010;68:76–83.CrossRefGoogle Scholar
  23. 23.
    Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A. 2008;105:2117–22.CrossRefGoogle Scholar
  24. 24.
    Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH, Horng JH, et al. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci U S A. 2015;112:2175–80.CrossRefGoogle Scholar
  25. 25.
    Wang B, Li L. Who determines the outcomes of HBV exposure? Trends Microbiol. 2015;23:328–9.CrossRefGoogle Scholar
  26. 26.
    Bohmig GA, Krieger PM, Saemann MD, Wenhardt C, Pohanka E, Zlabinger GJ. n-Butyrate downregulates the stimulatory function of peripheral blood-derived antigen-presenting cells: a potential mechanism for modulating T-cell responses by short-chain fatty acids. Immunology. 1997;92:234–43.CrossRefGoogle Scholar
  27. 27.
    Ray K. Gut microbiota: obesity-induced microbial metabolite promotes HCC. Nat Rev Gastroenterol Hepatol. 2013;10:442.CrossRefGoogle Scholar
  28. 28.
    Ren YD, Ye ZS, Yang LZ, Jin LX, Wei WJ, Deng YY, et al. Fecal microbiota transplantation induces HBeAg clearance in patients with positive HBeAg after long-term antiviral therapy. Hepatology. 2017;65(5):1765–8.CrossRefGoogle Scholar
  29. 29.
    Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JB, Nieuwdorp M. The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia. 2010;53:606–13.CrossRefGoogle Scholar
  30. 30.
    Xu M, Wang B, Fu Y, Chen Y, Yang F, Lu H, et al. Changes of fecal Bifidobacterium species in adult patients with hepatitis B virus-induced chronic liver disease. Microb Ecol. 2012;63:304–13.CrossRefGoogle Scholar
  31. 31.
    Lu H, Wu Z, Xu W, Yang J, Chen Y, Li L. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microb Ecol. 2011;61:693–703.CrossRefGoogle Scholar
  32. 32.
    Wei X, Yan X, Zou D, Yang Z, Wang X, Liu W, et al. Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterol. 2013;13:175.CrossRefGoogle Scholar
  33. 33.
    Bajaj JS, Hylemon PB, Ridlon JM, Heuman DM, Daita K, White MB, et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol. 2012;303:G675–85.CrossRefGoogle Scholar
  34. 34.
    Bajaj JS, Hylemon PB, Ridlon JM, Heuman DM, Daita K, White MB, Monteith P, Noble NA, Sikaroodi M, Gillevet PM. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol. 2012;303(6):G675–85.CrossRefGoogle Scholar
  35. 35.
    Chen Y, Ji F, Guo J, Shi D, Fang D, Li L. Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology. Sci Rep. 2016;6:34055.CrossRefGoogle Scholar
  36. 36.
    Rakoff-Nahoum S, Medzhitov R. Innate immune recognition of the indigenous microbial flora. Mucosal Immunol. 2008;1(Suppl 1):S10–4.CrossRefGoogle Scholar
  37. 37.
    Bajaj JS, Betrapally NS, Hylemon PB, Heuman DM, Daita K, White MB, et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology. 2015;62:1260–71.CrossRefGoogle Scholar
  38. 38.
    Gerber T, Schomerus H. Hepatic encephalopathy in liver cirrhosis: pathogenesis, diagnosis and management. Drugs. 2000;60:1353–70.CrossRefGoogle Scholar
  39. 39.
    Bajaj JS, Betrapally NS, Gillevet PM. Decompensated cirrhosis and microbiome interpretation. Nature. 2015;525:E1–2.CrossRefGoogle Scholar
  40. 40.
    Liu J, Wu D, Ahmed A, Li X, Ma Y, Tang L, et al. Comparison of the gut microbe profiles and numbers between patients with liver cirrhosis and healthy individuals. Curr Microbiol. 2012;65:7–13.CrossRefGoogle Scholar
  41. 41.
    Ling Z, Liu X, Cheng Y, Jiang X, Jiang H, Wang Y, et al. Decreased diversity of the oral microbiota of patients with hepatitis B virus-induced chronic liver disease: a pilot project. Sci Rep. 2015;5:17098.CrossRefGoogle Scholar
  42. 42.
    Bajaj JS, Kakiyama G, Savidge T, Takei H, Kassam ZA, Fagan A, et al. Antibiotic-associated disruption of microbiota composition and function in cirrhosis is restored by fecal transplant. Hepatology. 2018;68(3):1205.CrossRefGoogle Scholar
  43. 43.
    Li L, Wu Z, Ma W, Yu Y, Chen Y. Changes in intestinal microflora in patients with chronic severe hepatitis. Chin Med J. 2001;114:869–72.PubMedGoogle Scholar
  44. 44.
    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The international scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–14.CrossRefGoogle Scholar
  45. 45.
    Ezendam J, van Loveren H. Probiotics: immunomodulation and evaluation of safety and efficacy. Nutr Rev. 2006;64:1–14.CrossRefGoogle Scholar
  46. 46.
    Huang YF, Liu PY, Chen YY, Nong BR, Huang IF, Hsieh KS, et al. Three-combination probiotics therapy in children with salmonella and rotavirus gastroenteritis. J Clin Gastroenterol. 2014;48:37–42.CrossRefGoogle Scholar
  47. 47.
    Gevers D, Danielsen M, Huys G, Swings J. Molecular characterization of tet(M) genes in lactobacillus isolates from different types of fermented dry sausage. Appl Environ Microbiol. 2003;69:1270–5.CrossRefGoogle Scholar
  48. 48.
    Loguercio C, Federico A, Tuccillo C, Terracciano F, D’Auria MV, De Simone C, et al. Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J Clin Gastroenterol. 2005;39:540–3.CrossRefGoogle Scholar
  49. 49.
    Mittal VV, Sharma BC, Sharma P, Sarin SK. A randomized controlled trial comparing lactulose, probiotics, and L-ornithine L-aspartate in treatment of minimal hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2011;23:725–32.CrossRefGoogle Scholar
  50. 50.
    Malaguarnera M, Gargante MP, Malaguarnera G, Salmeri M, Mastrojeni S, Rampello L, et al. Bifidobacterium combined with fructo-oligosaccharide versus lactulose in the treatment of patients with hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2010;22:199–206.CrossRefGoogle Scholar
  51. 51.
    Pereg D, Kotliroff A, Gadoth N, Hadary R, Lishner M, Kitay-Cohen Y. Probiotics for patients with compensated liver cirrhosis: a double-blind placebo-controlled study. Nutrition. 2011;27:177–81.CrossRefGoogle Scholar
  52. 52.
    Dhiman RK, Rana B, Agrawal S, Garg A, Chopra M, Thumburu KK, et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology. 2014;147:1327–37. e1323CrossRefGoogle Scholar
  53. 53.
    Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015;60(Suppl 2):S129–34.CrossRefGoogle Scholar
  54. 54.
    Hempel S, Newberry S, Ruelaz A, Wang Z, Miles JN, Suttorp MJ, et al. Safety of probiotics used to reduce risk and prevent or treat disease. Evid Rep Technol Assess. 2011, 22(200):1–645.Google Scholar
  55. 55.
    Donohue DC. Safety of probiotics. Asia Pac J Clin Nutr. 2006;15:563–9.PubMedGoogle Scholar
  56. 56.
    Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Timmerman HM, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371:651–9.CrossRefGoogle Scholar
  57. 57.
    Yi P, Li L. The germfree murine animal: an important animal model for research on the relationship between gut microbiota and the host. Vet Microbiol. 2012;157:1–7.CrossRefGoogle Scholar
  58. 58.
    Brugman S, Schneeberger K, Witte M, Klein MR, van den Bogert B, Boekhorst J, et al. T lymphocytes control microbial composition by regulating the abundance of Vibrio in the zebrafish gut. Gut Microbes. 2014;5:737–47.CrossRefGoogle Scholar
  59. 59.
    Clark LC, Hodgkin J. Commensals, probiotics and pathogens in the Caenorhabditis elegans model. Cell Microbiol. 2014;16:27–38.CrossRefGoogle Scholar
  60. 60.
    Ke WM, Li XJ, Yu LN, et al. Etiological investigation of fatal liver failure during the course of chronic hepatitis B in south East China. J Gastroenterol. 2006;41(4):347–51.CrossRefGoogle Scholar
  61. 61.
    Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science. 1999;283(5405):1183–6.CrossRefGoogle Scholar
  62. 62.
    Maini MK, Boni C, Lee CK, et al. The role of virus specific CD8 (+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med. 2000;191(8):1269–80.CrossRefGoogle Scholar
  63. 63.
    Kumar S, Ratho RK, Chaw La YK, et al. Virological investigation of a hepatitis epidemic in North India. Singapore Med J. 2006;47(9):769–73.PubMedGoogle Scholar
  64. 64.
    Nusret A, Seyfettin Y, Ahmet G. Relationship between serum cytokine levels and histopathological changes of liver in patients with hepatitis B. World J Gastroenterol. 2005;11(21):3260–3.CrossRefGoogle Scholar
  65. 65.
    Husa P, Linhartová A, Nemecek V, et al. Hepatitis D. Acta Virol. 2005;49:219–25.PubMedGoogle Scholar
  66. 66.
    Canovic P, Gajovic O, Todorovic Z, et al. Epstein-Barr virus hepatitis associated with icterus a case report. Med Pregl. 2006;59(3):179–82.CrossRefGoogle Scholar
  67. 67.
    Jeffrey I. Epstein-Barr virus infection. N Engl J Med. 2000;343(7):481–92.CrossRefGoogle Scholar
  68. 68.
    Thio CL, Seaberg EC, Skolasky R Jr, et al. HIV-1, hepatitis B virus, and risk of liver related mortality in the Multicenter Cohort Study (MACS) [J]. Lancet. 2002;360:1921–6.CrossRefGoogle Scholar
  69. 69.
    Gómez-Gonzalo M, Carretero M, Rullas J, et al. The hepatitis B virus X protein induces HIV-1 replication and transcription in synergy with T-cell activation signals: functional roles of NF-kappaB/NF-AT and SP1-binding sites in the HIV-1 long terminal repeat promoter. J Biol Chem. 2001;276(38):35435–43.CrossRefGoogle Scholar
  70. 70.
    Nunez M, Sariano V. Management of patients coinfected with hepatitis B virus and HIV. Lancet Infect Dis. 2005;5:374–82.CrossRefGoogle Scholar
  71. 71.
    Aizawa Y, Jing YH. Antibacterial drugs and drug-induced liver injury. Prog Jpn Med. 2006;27(6):267–9. (in Chinese)Google Scholar
  72. 72.
    Nakamoto N, You LR. Antineoplastic-induced liver injury. Prog Jpn Med. 2006;27(6):253–5. (in Chinese)Google Scholar
  73. 73.
    Letschert K, Faulstich H, Keller D, et al. Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci. 2006;91:140–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. and Huazhong University of Science and Technology Press 2019

Authors and Affiliations

  • Bao-Hong Wang
    • 1
  • Jing Guo
    • 1
  • Lan-Juan Li
    • 1
    Email author
  • Tao Chen
    • 2
  • Chun-Xia Guo
    • 3
  • Yong-Wen He
    • 3
  1. 1.National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
  3. 3.Wuhan Union Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina

Personalised recommendations