Host Genetic Characters of Acute Exacerbation of Chronic Hepatitis B (AECHB)

  • Yu-Ming Wang
  • Jun-Qi Niu
  • Guo-Hong Deng
  • Ying-Ren Zhao


This chapter describes the principles of genetic research, achievements in gene polymorphism and GWAS, epigenetics in AECHB and HBV ACLF.
  1. 1.

    The exacerbation of hepatitis B relates to the interactions between virus and host, including their molecular genetic characteristics. This is a core issue in basic research on severe hepatitis B.

  2. 2.

    The “quality” of an individual’s reaction to the virus and the environment is determined by host genetic variations on both protein and immune levels, with the “quantity” of the reaction determined by gene transcription and expression. Both fundamentally affect the occurrence and development of severe hepatitis B.

  3. 3.

    Genetic research strategies in severe hepatitis B include studies of candidate genes, genome-wide association and epigenetics.

  4. 4.

    The CXCL10 gene is an important candidate gene associated with severe hepatitis B. The G-201A sites of the CXCL10 promoter region are key regulators of the progression of severe hepatitis B.

  5. 5.

    Genome-wide association studies (GWAS) have become central of genetic studies on the complex diseases. The studies have surpassed the limitations of small-scale and local-site studies and have played an important role in revealing susceptible loci and biological pathways in severe hepatitis B. rs3129859 at human leucocyte antigen (HLA) class II region (chromosome 6p21.32) has been identified association with HBV-related ACLF.

  6. 6.

    Epigenetics, an emerging branch of genetics, does not involve changes in DNA sequence, or the heritable or reversible regulation of gene expression. Rather, epigenetics research mainly involves the regulation of DNA methylation, chromatin histone modification, chromatin remodeling and non-coding RNA. Although epigenetic modification studies in severe hepatitis B are at their initial stage, they are expected to become more important in the future.



  1. 1.
    Deng G, Zhou G, Zhang R, et al. Regulatory polymorphisms in the promoter of CXCL10 gene and disease progression in male hepatitis B virus carriers. Gastroenterology. 2008;134(3):716–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Collins FS, Guyer MS, Chakravarti A. Variations on a theme: cataloging human DNA sequence variation. Science. 1997;278:1580–1.CrossRefPubMedGoogle Scholar
  3. 3.
    Lander ES. The new genomics: global views of biology. Science. 1996;274:536–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409:928–33.CrossRefPubMedGoogle Scholar
  5. 5.
    The International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299–320.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Anderson C, Pettersson F, Barrett J, et al. Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms. Am J Hum Genet. 2008;83:112–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wellcome Trust Case Control Consortium. Genome-wide association study of 14000 cases of seven common diseases and 3000 shared controls. Nature. 2007;447:661–78.CrossRefGoogle Scholar
  9. 9.
    Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322:881–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.CrossRefPubMedGoogle Scholar
  11. 11.
    O’Brien TR. Interferon-alfa, interferon-λ and hepatitis C. Nat Genet. 2009;41:1048–50.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang H, Zhai Y, Hu Z, et al. Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet. 2010;42:755–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, Junkins H, McMahon A, Milano A, Morales J, Pendlington Z, Welter D, Burdett T, Hindorff L, Flicek P, Cunningham F, Parkinson H. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(Database issue):D896–901.CrossRefPubMedGoogle Scholar
  14. 14.
    McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.CrossRefGoogle Scholar
  15. 15.
    Zeng Z, Guan L, An P, et al. A population-based study to investigate host genetic factors associated with hepatitis B infection and pathogenesis in the Chinese population. BMC Infect Dis. 2008;8:1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wong VW, Chan HL. Severe acute exacerbation of chronic hepatitis B: a unique presentation of a common disease. J Gastroenterol Hepatol. 2009;24:1179–86.CrossRefPubMedGoogle Scholar
  17. 17.
    Tan W, Xia J, Dan Y, et al. Genome-wide association study identifies HLA-DR variants conferring risk of HBV-related acute-on-chronic liver failure. Gut. 2018;67(4):757–66.PubMedGoogle Scholar
  18. 18.
    Spencer CC, Su Z, Donnelly P, Marchini J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5:e1000477.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet. 2006;38:209–13.CrossRefPubMedGoogle Scholar
  20. 20.
    Daly AK, Donaldson PT, Bhatnagar P, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41:816–9.CrossRefPubMedGoogle Scholar
  21. 21.
    LaFramboise T. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res. 2009;37:4181–93.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mardis ER. Next-generation DNA sequencing methods. Ann Rev Genomics Hum Genet. 2008;9:387–402.CrossRefGoogle Scholar
  23. 23.
    Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–6.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics. 2010;95:315–27.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Purcell S, Neale B, Todd-Brown K, et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet. 2007;81:559–75.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Price AL, Patterson NJ, Plenge RM, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Marchini J, Howie B, Myers S, et al. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39:906–13.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511.CrossRefPubMedGoogle Scholar
  30. 30.
    Lewontin RC. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics. 1964;49:49–67.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Browning SR, Browning BL. Haplotype phasing: existing methods and new developments. Nat Rev Genet. 2011;12:703–14.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu JZ, McRae AF, Nyholt DR, et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet. 2010;87:139–45.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang K, Chang S, Cui S, et al. ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework. Nucleic Acids Res. 2011;39:W437–43.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang K, Cui S, Chang S, et al. i-GSEA4GWAS: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study. Nucleic Acids Res. 2010;38:W90–5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Raychaudhuri S, Plenge RM, Rossin EJ, et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 2009;5:e1000534.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Soto-Gutierrez A, Tafaleng E, Kelly V, et al. Modeling and therapy of human liver diseases using induced pluripotent stem cells: how far have we come? Hepatology. 2011;53:708–11.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Visscher PM. Sizing up human height variation. Nat Genet. 2008;40:489–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Allen HL, Estrada K, Lettre G, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467:832–8.CrossRefGoogle Scholar
  39. 39.
    Yang J, Manolio TA, Pasquale LR, et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet. 2011;43:519–25.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Remeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5.CrossRefGoogle Scholar
  41. 41.
    Browning JD, Cohen JC, Hobbs HH. Patatin-like phospholipase domain-containing 3 and the pathogenesis and progression of pediatric nonalcoholic fatty liver disease. Hepatology. 2010;52:1189–92.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tian C, Stokowski RP, Kershenobich D, et al. Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet. 2010;42:21–3.CrossRefPubMedGoogle Scholar
  43. 43.
    Krawczyk M, Grunhage F, Zimmer V, et al. Variant adiponutrin (PNPLA3) represents a common fibrosis risk gene: non-invasive elastography-based study in chronic liver disease. J Hepatol. 2011;55:299–306.CrossRefPubMedGoogle Scholar
  44. 44.
    Ge D, Fellay J, Thompson AJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461:399–401.CrossRefPubMedGoogle Scholar
  45. 45.
    Knapp S, Warshow U, Ho KM, et al. A polymorphism in IL28B distinguishes exposed, uninfected individuals from spontaneous resolvers of HCV infection. Gastroenterology. 2011;141:320–5.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lampertico P, Vigano M, Cheroni C, et al. IL28B polymorphisms predict interferon-related HBsAg seroclearance in genotype D HBeAg-negative patients with chronic hepatitis B. Hepatology. 2013;57(3):890–6. Scholar
  47. 47.
    Kelly C, Klenerman P, Barnes E. Interferon lambdas: the next cytokine storm. Gut. 2012;60:1284–93.CrossRefGoogle Scholar
  48. 48.
    Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39:770–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Ng MC, Tam CH, Lam VK, et al. Replication and identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese. J Clin Endocrinol Metab. 2007;92:3733–7.CrossRefGoogle Scholar
  51. 51.
    Thomas D. Gene-environment-wide association studies: emerging approaches. Nat Rev Genet. 2010;11:259–72.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Juran BD, Lazaridis KN. Genomics in the post-GWAS era. Semin Liver Dis. 2011;31:215–22.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li Y, Vinckenbosch N, Tian G, et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat Genet. 2010;42:969–72.CrossRefPubMedGoogle Scholar
  54. 54.
    Mills RE, Walter K, Stewart C, et al. Mapping copy number variation by population-scale genome sequencing. Nature. 2011;470:59–65.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cordell HJ. Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet. 2009;10:392–404.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chambers JC, Zhang W, Sehmi J, et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet. 2011;43(11):1131–8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zeggini E, Scott L, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Park DJ, Lesueur F, Nguyen-Dumont T, et al. Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet. 2012;90:734–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Editorial. Integrating with integrity. Nat Genet. 2010;42(1):1–1.CrossRefGoogle Scholar
  60. 60.
    Deng G, Wang Y. Host genetic background and AECHB. Chin J Liver Dis. 2010;18(2):88–91.Google Scholar
  61. 61.
    Ioannidis JP, Trikalinos TA, Khoury MJ. Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases. Am J Epidemiol. 2006;164:609–14.CrossRefPubMedGoogle Scholar
  62. 62.
    Bonder MJ, Kurilshikov A, Tiqchelaar EF, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48(11):1407–12.CrossRefPubMedGoogle Scholar
  63. 63.
    Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Svedruzic ZM. Mammalian cytosine DNA methyltransferase Dnmt1: enzymatic mechanism, novel mechanism-based inhibitors, and RNA-directed DNA methylation. Curr Med Chem. 2008;15:92–106.CrossRefPubMedGoogle Scholar
  65. 65.
    Ollikainen M, Ismail K, Gervin K, Kyllonen A, Hakkarainen A, Lundbom J, et al. Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat. Clin Epigenetics. 2015;7:39.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Xu BY, Wang YM, Deng GH, Luo YH, Du ZL, Lan L, et al. [Difference analysis of genome-wide DNA methylation status of CpG islands between the monozygotic twins with disconcordant phenotypes of chronic hepatitis B virus infection]. Zhonghua Yi Xue Za Zhi. 2005;85:2317–21.Google Scholar
  67. 67.
    Webb GJ, Hirschfield GM. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun. 2016;66:25–39.CrossRefPubMedGoogle Scholar
  68. 68.
    He YL, Zhao YR, Zhang SL, Lin SM. Host susceptibility to persistent hepatitis B virus infection. World J Gastroenterol. 2006;12:4788–93.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Mann DA. Epigenetics in liver disease. Hepatology. 2014;60:1418–25.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    El Taghdouini A, Sorensen AL, Reiner AH, Coll M, Verhulst S, Mannaerts I, et al. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget. 2015;6:26729–45.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Dkhil MA, Al-Quraishy S, Abdel-Baki AA, Ghanjati F, Arauzo-Bravo MJ, Delic D, et al. Epigenetic modifications of gene promoter DNA in the liver of adult female mice masculinized by testosterone. J Steroid Biochem Mol Biol. 2015;145:121–30.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhao YR, Gong L, He YL, Liu F, Lu C. Relationship between polymorphism of class II transactivator gene promoters and chronic hepatitis B. World J Gastroenterol. 2005;11:854–7.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    He Y, Jin L, Wang J, Yan Z, Chen T, Zhao Y. Mechanisms of fibrosis in acute liver failure. Liver Int. 2015;35:1877–85.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    He Y, Zhao Y, Zhang S, Chen W, Lin S, Yang Q, et al. Not polymorphism but methylation of class II transactivator gene promoter IV associated with persistent HBV infection. J Clin Virol. 2006;37:282–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Smith NL, Denning DW. Clinical implications of interferon-gamma genetic and epigenetic variants. Immunology. 2014;143:499–511.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Gao S, Sun FK, Fan YC, Shi CH, Zhang ZH, Wang LY, et al. Aberrant GSTP1 promoter methylation predicts short-term prognosis in acute-on-chronic hepatitis B liver failure. Aliment Pharmacol Ther. 2015;42:319–29.CrossRefPubMedGoogle Scholar
  77. 77.
    Gao S, Ji XF, Li F, Sun FK, Zhao J, Fan YC, et al. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 predicts prognosis of acute-on-chronic hepatitis B liver failure. J Viral Hepat. 2015;22:112–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Zhang JJ, Fan YC, Zhang ZH, Han J, Wang LY, Li T, et al. Methylation of suppressor of cytokine signalling 1 gene promoter is associated with acute-on-chronic hepatitis B liver failure. J Viral Hepat. 2015;22:307–17.CrossRefPubMedGoogle Scholar
  79. 79.
    Qi L, Zou ZQ, Wang LY, Gao S, Fan YC, Long B, et al. Methylation of the glutathione-S-transferase M3 gene promoter is associated with oxidative stress in acute-on-chronic hepatitis B liver failure. Tohoku J Exp Med. 2012;228:43–51.CrossRefPubMedGoogle Scholar
  80. 80.
    Han LY, Guo ZY, Fan YC, Wang K. [Hypomethylation of TNF-alpha gene promoter in the patients with acute-on-chronic hepatitis B liver failure]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2011;25:368–70.Google Scholar
  81. 81.
    Qi ZX, Yu SX, Hao HS, Li FC, Guo ZY, Fan YC, et al. [The analysis of IL-10 and its methylation in the patients with acute on chronic liver failure]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2011;25:99–101.Google Scholar
  82. 82.
    Fan XP, Zou ZQ, Long B, Guo YM, Wang SK, Jia DX, et al. Enhanced demethylation of interferon-gamma gene promoter in peripheral blood mononuclear cells is associated with acute-on-chronic hepatitis B liver failure. Tohoku J Exp Med. 2011;224:13–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Zhang Q, Yang F, Li X, Wang LW, Chu XG, Zhang H, et al. Trichostatin A protects against experimental acute-on-chronic liver failure in rats through regulating the acetylation of nuclear factor-kappaB. Inflammation. 2015;38:1364–73.CrossRefPubMedGoogle Scholar
  84. 84.
    Jin L, Wang K, Liu H, Chen T, Yang Y, Ma X, et al. Genomewide histone H3 lysine 9 acetylation profiling in CD4+ T cells revealed endoplasmic reticulum stress deficiency in patients with acute-on-chronic liver failure. Scand J Immunol. 2015;82:452–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Murata K, Hamada M, Sugimoto K, Nakano T. A novel mechanism for drug-induced liver failure: inhibition of histone acetylation by hydralazine derivatives. J Hepatol. 2007;46:322–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Chen W, Yan ZH, Wang YM, Xu BY, Deng GH. Genome-wide microarray-based analysis of miRNAs expression in patients with acute-on-chronic liver failure. Hepatobiliary Pancreat Dis Int. 2014;13:32–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Niu D, Zhang J, Ren Y, Feng H, Chen WN. HBx genotype D represses GSTP1 expression and increases the oxidative level and apoptosis in HepG2 cells. Mol Oncol. 2009;3:67–76.CrossRefPubMedGoogle Scholar
  88. 88.
    Suchy FJ, Ananthanarayanan M. Bile acid hepatotoxicity: epigenetics comes to the rescue. Hepatology. 2015;62:22–4.CrossRefPubMedGoogle Scholar
  89. 89.
    Tian W, Xu Y. Decoding liver injury: a regulatory role for histone modifications. Int J Biochem Cell Biol. 2015;67:188–93.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. and Huazhong University of Science and Technology Press 2019

Authors and Affiliations

  • Yu-Ming Wang
    • 1
  • Jun-Qi Niu
    • 2
  • Guo-Hong Deng
    • 1
  • Ying-Ren Zhao
    • 3
  1. 1.Southwest Hospital, Army Medical UniversityChongqingChina
  2. 2.The First Hospital of Jilin UniversityChangchunChina
  3. 3.The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations