Skip to main content

Chapter 8 Casimir Forces: Fundamental Theory, Computation, and Nanodevice Applications

  • Conference paper
  • First Online:
Book cover Quantum Nano-Photonics (NATO 2017)

Included in the following conference series:

Abstract

Seventy years after submission to the Physical Review of the crucial quantum electrodynamical treatment of interatomic dispersion forces by Casimir and Polder, our understanding of such interactions in both the unretarded and retarded regimes has undergone a dramatic and intricate evolution. In this contribution, we explore the ultimate physical motivations leading to this fascinating trajectory rich in momentous implications for the goal of both fabrication and operation of highly integrated micro- and nano-structures. The first and most obvious development has been the growing appreciation that, far from only representing a weak, though exotic, effect, Casimir’s “zero point pressure of electromagnetic waves” between two conducting parallel planes is actually a dominant interaction on the nanoscale. This resulted in Feynman’s unforgettable caricature – in “There’s plenty of room at the bottom” – of van der Waals forces between microparts as a “man with his hands full of molasses,” which led to such forces being understood as the leading cause of undesirable stiction for several decades. However, commencing in the 1980s, the realization that such strong dispersion interactions might offer unique technological opportunities surfaced. The second thrust was connected to the discovery that, unlike expected from London’s intermolecular force theory and the naive assumption of additivity, dispersion forces depend quite unpredictably on topology and on the interplay of dielectric properties of the interacting media. This may lead to drastic departures from results obtained through perturbative methods and indeed to the prediction, later verified both in the unretarded and retarded regimes, that dispersion forces may become repulsive. The challenge of computing Casimir forces in more general geometries different from that of two parallel planes has led to substantial progress from the numerical standpoint although open problems remain. Lastly, in one of the earliest and most significant discoveries in the history of the field, it was shown that dispersion forces can be modulated in time, for instance by illumination in semiconductors. This discovery opened the way to consideration of thermodynamical engine cycles enabled by Casimir forces and to a novel, highly effective means for energy transfer on the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that ‘induction’ here describes what we presently refer to as polarization (Ref. [2], p. 164). This quotation is from the 2nd edition (1881) of the Treatise. However, the entire last paragraph of Art. 27 is identical in both the 1st (1873) and 3rd editions (1892). Both statements closely paraphrase, with somewhat more familiar language, equivalent principles stated by William Thomson (Baron Kelvin) in his On the Mathematical Theory of Electricity in Equilibrium, indeed cited by Maxwell (see the Reprint of Papers on Electrostatics and Magnetism, p. 43, Art. 59) [3]. Also, ‘electricity,’ and related terms, are used where the modern term of charge is meant.

  2. 2.

    Therefore the statement that “neutrons have no charge and are neither attracted nor repelled by charged particles” (Ref. [6], p. 501) is obviously incorrect as neutrons, as all nucleons, are polarizable [7] (see the “Naïve picture” in Sect. 8.2.1 therein) and thus they can be “acted on by an electrified body.” The erroneous statement does not appear in later editions [8].

  3. 3.

    The fact that “repetition of a plausible statement increases a person’s belief in the referential validity or truth of that statement,” popularly referred to as the ‘truth effect,’ was demonstrated decades ago by means of psychology experimentation [21].

  4. 4.

    This calculation was first attempted by S. C. Wang in 1927 [31].

  5. 5.

    The very personal ferocity surrounding Casimir effect controversies is, by itself, a subject worthy of social science study. For details about this particular exchange see, for instance, “A fraction too much friction causes physics fisticuffs” by Chris Lee [73]. For further details, and for the effect of such debates throughout the process of technology transfer, see Ref. [18].

  6. 6.

    This is a translation into English quoted in Ref. [104]; see also Ref. [105] (in German) and Ref. [106] (in Russian).

  7. 7.

    Here “a molecule is the smallest possible portion of a particular substance.” [123] (Vol. II, p. 46).

  8. 8.

    This concept might be a provocative solution of ‘double-starred’ Prob. 10.31, “Mutually induced dipoles” in Electricity and Magnetism by Purcell and Morin [122].

Bibliography

  1. Maxwell JC (1954) A treatise on electricity and magnetism (vol I and vol II), 2nd edn. Dover Publications, Inc., New York

    MATH  Google Scholar 

  2. Darrigol O (2000) Electrodynamics from Ampère to Einstein. Oxford University Press, Oxford

    MATH  Google Scholar 

  3. Thomson W (1st Baron Kelvin) (1884) Reprint of papers on electrostatics and magnetism, 2nd edn. Macmiillan & Co., London

    Google Scholar 

  4. Faraday M (1844) Experimental researches in electricity (vol II). Richard and John Edward Taylor, London

    Google Scholar 

  5. Hirsch EDJ (1992) What your third grader needs to know. Dell Publishing, New York

    Google Scholar 

  6. Hewitt PG (1999) Conceptual physics, 3rd edn. Addison-Wesley, San Francisco

    Google Scholar 

  7. Hagelstein F, Miskimen R, Pascalutsa V (2016) Prog Part Nucl Phys 88:29

    Article  ADS  Google Scholar 

  8. Hewitt PG (2006) Conceptual physics, 10th edn. Addison-Wesley, San Francisco

    Google Scholar 

  9. Babb JF, Higa R, Hussein MS (2017) Eur Phys J A 53:126

    Article  ADS  Google Scholar 

  10. Pinto F (2016) In: Third IEEE international workshop on metrology for aerospace. IEEE, Florence, p. (Paper ID: 4292221)

    Google Scholar 

  11. Boyle R (1669) A continuation of new experiments. Henry Hall printer to the University, Oxford

    Google Scholar 

  12. Shapin S, Schaffer S (1985) Leviathan and the air pump: Hobbes, Boyle, and the experimental life. Princeton University Press, Princeton

    Google Scholar 

  13. Sparnaay MJ (1989) In: Sarlemijin A, Sparnaay MJ (eds) Physics in the making, essays on developments in 20th century physics in honour of H. B. G. Casimir. North-Holland, Amsterdam, pp 235–246

    Google Scholar 

  14. Newton I (1704) Opticks, 4th edn. William Innys at the West-End of St. Paul’s

    Google Scholar 

  15. Whitworth J (1858) Miscellaneous papers on mechanical subjects. Longman, London

    Google Scholar 

  16. Tyndall J (1875) Proc R Inst Great Britain 7:524

    Google Scholar 

  17. Feynman R, Leighton RB, Sands M (1963) Feynman’s lectures on physics. Caltech, Pasadena

    Google Scholar 

  18. Pinto F (2018) In: Schulz MJ, Shanov VN, Yin J, Cahay M (eds) Nanotube superfiber materials, science to commercialization, chap 30. Elsevier

    Google Scholar 

  19. Casimir HBG (1948) Proc Kon Ned Akad Wetenshap 51:793

    Google Scholar 

  20. Casimir HBG (2000) In: Babb JF, Milonni PW, Spruch L (eds) Comments on atomic and molecular physics, comments on modern physics. Part D (Special issue: Casimir forces), vol 1. Gordon and Breach Science Publishers, Malaysia, pp 175–177

    Google Scholar 

  21. Hasher L, Goldstein D, Toppino T (1977) J Verbal Learning Verbal Behav 16:107

    Article  Google Scholar 

  22. Pinto F (2016) Class Quantum Grav 33:237001

    Article  ADS  Google Scholar 

  23. Cooper MM (2015) J Chem Ed 92:1273

    Article  Google Scholar 

  24. Underwood SM, Reyes-gastelum D, Cooper MM (2016) Chem Educ Res Pract 17:365

    Article  Google Scholar 

  25. Becker N, Noyes K, Cooper M (2016) J Chem Ed 93:1713

    Article  Google Scholar 

  26. Pinto F (2012) 48th AIAA/ASME/SAE/ASEE joint propulsion conference (JPC) & exhibit, July. AIAA, Atlanta, pp 1–31. https://doi.org/10.2514/6.2012-3713

    Google Scholar 

  27. Pinto F (2014) Am Sci 102:280

    Article  Google Scholar 

  28. Dubin D (2003) Numerical and analytical methods for scientists and engineers using mathematica. Wiley-Interscience, Hoboken

    Book  MATH  Google Scholar 

  29. Cohen-Tannoudji C, Diu B, Laloë F (1977) Quantum mechanics. pp 1130–1140

    Google Scholar 

  30. Milonni PW (1994) The quantum vacuum. Academic Press, San Diego

    Google Scholar 

  31. Wang SC (1927) Phys Z 28:663

    Google Scholar 

  32. London F (1937) Trans Faraday Soc 33:8

    Article  Google Scholar 

  33. Karplus M, Porter RN (1970) Atoms & molecules. The Benjamin/Cummings Publishing Company, Menlo Park

    Google Scholar 

  34. Kleppner D (1990) Phys Today 43(10):9

    Article  Google Scholar 

  35. Landau LD, Lifshitz EM (1976) Mechanics, 3rd edn. Pergamon Press, Oxford

    MATH  Google Scholar 

  36. Goldstein H, Poole C, Safko J (2002) Classical mechanics, 3rd edn. Addison Wesley, San Francisco

    MATH  Google Scholar 

  37. Farina C, Santos FC, Tort AC (1999) Am J Phys 67(4):344

    Article  ADS  Google Scholar 

  38. Axilrod BM, Teller E (1943) J Chem Phys 11(6):299

    Article  ADS  Google Scholar 

  39. de Boer JH (1936) Trans Faraday Soc 32:10

    Article  Google Scholar 

  40. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier Publishing Company, Inc., New York

    Google Scholar 

  41. Hamaker H (1937) Physica 4(10):1058

    Article  ADS  Google Scholar 

  42. González AE (1985) Physica 131A:228

    Article  ADS  Google Scholar 

  43. Milonni PW, Cook RJ, Goggin ME (1988) Phys Rev A 38(3):1621

    Article  ADS  Google Scholar 

  44. Landau LD, Lifshitz EM (1975) The classical theory of fields, 4th edn. Pergamon Press, Oxford

    MATH  Google Scholar 

  45. Kupiszewska D, Mostowski J (1990) Phys Rev A 41(9):4636

    Article  ADS  Google Scholar 

  46. Pinto F (2009) Phys Rev A 80:042113

    Article  ADS  Google Scholar 

  47. Dowling JP (1989) Math Mag 62(5):324

    Article  MathSciNet  Google Scholar 

  48. Hardy GH (1949) Divergent series. Oxford University Press, London

    MATH  Google Scholar 

  49. Arfken G, Weber HJ (2013) Mathematical methods for physicists. Elsevier Academic Press, Amsterdam

    MATH  Google Scholar 

  50. Bordag M, Mohideen U, Mostepanenko VM (2001) Phys Rep 353:1

    Article  ADS  MathSciNet  Google Scholar 

  51. Ellingsen SA (2006) Casimir effect in plane parallel geometry. Ph.D. thesis, Norwegian University of Science and Technology

    Google Scholar 

  52. Boyer TH (1974) Phys Rev A 9(5):2078

    Article  ADS  Google Scholar 

  53. Hushwater V (1997) Am J Phys 65(5):381

    Article  ADS  Google Scholar 

  54. Lifshitz EM (1956) Sov Phys JETP 2(1):73

    Google Scholar 

  55. Podgornik R, Hansen PL, Parsegian VA (2003) J Chem Phys 119:1070

    Article  ADS  Google Scholar 

  56. Abelès F (1950) Ann Phys Paris 5:596

    Article  ADS  MathSciNet  Google Scholar 

  57. Born M, Wolf E (1970) Principles of optics, 4th edn. Pergamom Press, Oxford

    Google Scholar 

  58. Ninham BW, Parsegian VA (1970) J Chem Phys 52(9):4578

    Article  ADS  Google Scholar 

  59. Zhou F, Spruch L (1995) Phys Rev A 52(1):297

    Article  ADS  Google Scholar 

  60. Bendickson J, Dowling JP, Scalora M (1996) Phys Rev B 53(4):4107

    Article  ADS  Google Scholar 

  61. Parsegian VA (2006) Van der Waals forces. Cambridge University Press, Cambridge

    Google Scholar 

  62. Veble G, Podgornik R (2009) Phys Rev B 80:075422

    Article  ADS  Google Scholar 

  63. Arnold W, Hunklinger S, Dransfeld K (1980) Phys Rev B 21(4):1713

    Article  ADS  Google Scholar 

  64. Chen F, Klimchitskaya GL, Mostepanenko VM, Mohideen U (2007) Phys Rev B 76:035338

    Article  ADS  Google Scholar 

  65. Pinto F (2014) Int J Mod Phys D 23(12):1442001

    Article  ADS  Google Scholar 

  66. Pinto F (2016) TAUP 2015: proceedings of the XIV international conference on topics in astroparticle and underground physics. J Phys Conf Ser 718, Fornengo N, Regis M, Zechlin HS (eds) IOP Publishing, Turin, p 072004

    Google Scholar 

  67. Pinto F (2017) In: Proceedings of the fourteenth Marcel Grossmann meeting on general relativity Bianchi M, Jantzen RT, Ruffini R (eds) (World Scientific, Singapore, pp 3175–3182

    Google Scholar 

  68. Imboden M, Morrison J, Campbell DK, Bishop DJ (2014) J Appl Phys 116:134504

    Article  ADS  Google Scholar 

  69. Hawkes EW, Eason EV, Christensen DL, Cutkosky MR (2015) J R Soc Interface 12(102):20140675. https://doi.org/10.1098/rsif.2014.0675

    Article  Google Scholar 

  70. Forward RL (1984) Phys Rev B 30(4):1700

    Article  ADS  Google Scholar 

  71. Pinto F (1999) Phys Rev B 60(21):14740

    Article  ADS  Google Scholar 

  72. Maclay G (2010) Phys Rev A 82(3):032106

    Article  ADS  Google Scholar 

  73. Lee C (2009) Ars Technica 11(3). http://arstechnica.com/science/news/2010/06/a-fraction-too-much-friction-or-not-who-knows.ars

  74. Philbin TG, Leonhardt U (2009) New J Phys 11(3):033035

    Article  Google Scholar 

  75. Pendry JB (2010) New J Phys 12(3):033028

    Article  Google Scholar 

  76. Leonhardt U (2010) New J Phys 12(6):068001

    Article  Google Scholar 

  77. Pendry JB (2010) New J Phys 12(6):068002

    Article  Google Scholar 

  78. Volokitin A, Persson BNJ (2011) New J Phys 13(6):068001

    Article  Google Scholar 

  79. Kardar M, Golestanian R (1999) Rev Mod Phys 71(4):1233

    Article  ADS  Google Scholar 

  80. Maghrebi MF, Golestanian R, Kardar M (2013) Phys Rev A 88(4):042509

    Article  ADS  Google Scholar 

  81. Pendry JB (1997) J Phys Condens Matter 9:10301

    Article  ADS  Google Scholar 

  82. Silveirinha MG (2014) New J Phys 16(6):063011

    Article  MathSciNet  Google Scholar 

  83. Milton KA (2011) Am J Phys 79(7):697

    Article  ADS  Google Scholar 

  84. Teodorovich EV (1978) Proc R Soc Lond A 362(1708):71

    Article  ADS  Google Scholar 

  85. Levitov LS (1989) Europhys Lett 8(6):499

    Article  ADS  MathSciNet  Google Scholar 

  86. Kyasov AA, Dedkov GV (2000) Surf Sci 463(1):11

    Article  ADS  Google Scholar 

  87. Mahanty J (1980) J Phys B At Mol Opt Phys 13(22):4391

    Article  ADS  Google Scholar 

  88. Schaich W, Harris J (1981) J Phys F Met Phys 11:65

    Article  ADS  Google Scholar 

  89. Solow D (2009) How to read and do proofs. Wiley, New York

    MATH  Google Scholar 

  90. Keig WE (1985) Am J Phys 53(11):1084

    Article  ADS  Google Scholar 

  91. Ord-Hume AWJG (1977) Perpetual motion: the history of an obsession. San Martin’s Press, Inc, New York

    Google Scholar 

  92. Sorensen RA (1991) Am Sci 79(3):250

    ADS  Google Scholar 

  93. Sorensen RA (1992) Thought experiments. Oxford University Press, New York

    Google Scholar 

  94. Mach E (1919) The science of mechanics: a critical and historical account of its development. The Open Court Publishing Co., Chicago/London

    Google Scholar 

  95. Maxwell JC (1965) The scientific papers of James Clerk Maxwell. Dover Publications, Inc., New York

    MATH  Google Scholar 

  96. Dyson FJ (1972) Bull Am Math Soc 78(5):635

    Article  Google Scholar 

  97. Bunzl M (2004) Am Hist Rev 109(3):845

    Article  Google Scholar 

  98. Carr EH (1961) What is history? Cambridge University Press, Cambridge

    Google Scholar 

  99. Goodeve TM, Shelley CPB (1877) The Whitworth measuring machine. Longmans, Green, and Co., London

    Google Scholar 

  100. Campbell L, Garnett W (1882) Life of James Clerk Maxwell. Macmiillan & Co., London

    Google Scholar 

  101. Rowlinson JS (2002) Cohesion – a scientific history of intermolecular forces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  102. El’yashevich MA, Prot’ko TS (1981) Sov Phys Usp 24:876

    Article  ADS  Google Scholar 

  103. Coulson CA (1962) Nature 195:744

    Article  ADS  Google Scholar 

  104. Derjaguin BV (1967) Sov Phys Usp 10:108

    Article  ADS  Google Scholar 

  105. Lebedev P (1894) Annalen der Physik und Chemie 52:621

    Article  ADS  Google Scholar 

  106. Lebedev P (1963) Collected works. Izdatel’stvo Akademii Nauk S.S.S.R., Moscow-Leningrad

    Google Scholar 

  107. Casimir HBG (1998) Essays in honour of Victor Frederick Weisskopf (Physics and society). Springer, New York, pp 53–66

    Google Scholar 

  108. Casimir HBG (1987) In: Greiner W (ed) Physics of strong fields. Springer, pp 957–964

    Google Scholar 

  109. Lorentz HA (1916) The theory of electrons. B. G. Teubner, Leipzig

    Google Scholar 

  110. Thomson JJ (1897) Philos Mag 90:S1:25

    Google Scholar 

  111. Falconer I (1987) BSHS 20:241

    Google Scholar 

  112. Whittaker ET (1910) A history of the theories of Aether and electricity, vol I. Longmans, Green, and Co., London

    Google Scholar 

  113. Knudsen O (1978) Centaurus 2:53

    Article  ADS  Google Scholar 

  114. Buchwald JZ (1985)From Maxwell to microphysics: aspects of electromagnetic theory in the last quarter of the nineteenth century. University of Chicago Press, Chicago

    Google Scholar 

  115. Yaghjian AD (2014) Prog Electromagn Res 149:217

    Article  Google Scholar 

  116. Mossotti OF (1837) In: Taylor R (ed) Scientific memoirs, vol I, chap. Article XX, pp. 448–. Richard and John. E Taylor, London

    Google Scholar 

  117. Mossotti OF (1850) Memorie di Matematica e di Fisica della Societá Italianà delle Scienze 24(Pt. 2):49

    Google Scholar 

  118. Pelosi G, Selleri S (2015) Radio Sci Bull 355:79

    Google Scholar 

  119. Jeans JH (1911) The mathematical theory of electricity and magnetism, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  120. Van Vleck JH (1932) The theory of electric and magnetic susceptibilities. Oxford University Press, London

    MATH  Google Scholar 

  121. Faraday M (1839) Experimental researches in electricity, vol I. Bernard Quaritcii, London

    Google Scholar 

  122. Purcell EM, Morin DJ (2013) Electricity and magnetism, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  123. Maxwell JC (1841) Philos Mag Ser 3 LVII,19:125, 384

    Google Scholar 

  124. Griffiths DJ (2012) Introduction to electrodynamics. Addison-Wesley

    Google Scholar 

  125. Lorenz L (1880) Ann Phys Chem 1:70

    Article  ADS  Google Scholar 

  126. Spruch L (1986) Phys Today 39(11):37. https://doi.org/10.1063/1.881043

    Article  Google Scholar 

  127. Spruch L, Kelsey J (1978) Phys Rev A 18:845

    Article  ADS  Google Scholar 

  128. Marshall TW (1965) Proc Cambridge Philos Soc 61:537

    Article  ADS  MathSciNet  Google Scholar 

  129. Henry LL, Marshall TW (1966) Il Nuovo Cimento B XLI(2):188

    Google Scholar 

  130. Boyer TH (2001) In: Squeezed states and uncertainty relations, held at Boston university, Boston, U.S.A. on 4–8 June (2001), ed. by A.V.S. D. Han, Y. S. Kim, B. E. A. Saleh, Teich, M. C. Boston, U.S.A., pp. 1–6

    Google Scholar 

  131. Boyer TH (2010) Found Phys 40(8):1096. https://doi.org/10.1007/s10701-010-9436-0

    Article  ADS  MathSciNet  Google Scholar 

  132. Brügger G, Froufe-Pérez LS, Scheffold F, Sáenz JJ (2015) Nat Commun 6:7460

    Article  Google Scholar 

  133. Milonni PW (1976) Phys Rep 25:1

    Article  ADS  Google Scholar 

  134. Weinberg S (1989) Rev Mod Phys 61:1

    Article  ADS  Google Scholar 

  135. Rugh SE, Zinkernagel H (2002) Stud Hist Philos M P 33:663

    Article  Google Scholar 

  136. Wang Q, Zhu Z, Unruh WG (2017) Phys Rev D 95:103504

    Article  ADS  MathSciNet  Google Scholar 

  137. Boyer TH (1969) Phys Rev 182:1374

    Article  ADS  Google Scholar 

  138. Boyer TH (1985) Sci Am 253(2):70

    Article  Google Scholar 

  139. Boyer TH (1969) Phys Rev 186:1304

    Article  ADS  Google Scholar 

  140. Simpson WM (2014) Stud Hist Philos Mod Phys 48:84

    Article  Google Scholar 

  141. Ross DK, Moreau W (1995) Gen Relativ Gravit 27:845

    Article  ADS  Google Scholar 

  142. Boyer TH (1972) Phys Rev A 5:1799

    Article  ADS  Google Scholar 

  143. Voigt W (1887) Nachr Ges Wiss Gottingen 2:41

    Google Scholar 

  144. Ernst A, Hsu JP (2001) Chin J Phys 39(3):211

    Google Scholar 

  145. Heras R (2015) ArXiv pp 1–13

    Google Scholar 

  146. Chashchina O, Dudisheva N, Silagadze Z, Voigt SW (2016) ArXiv pp 1–32

    Google Scholar 

  147. Macrossan AMN (1986) BJPS 37(2):232

    Article  MathSciNet  Google Scholar 

  148. Darrigol O (2005) In: Einstein, 1905–2005 (Progress in mathematical physics, vol 47), chap. 1. Birkhäuser, pp 1–31

    Google Scholar 

  149. Rytov SM Theory of electric fluctuations and thermal radiation (AFCRC-TR-59-162)

    Google Scholar 

Download references

Acknowledgements

I am grateful to Professor Di Bartolo, Director, for his gracious invitation to participate – as a humble student – in the NATO Advanced Study on “Quantum Nano-photonics,” and for much more. I was particularly touched by the splendid atmosphere created by the Organizers, Maura Cesaria and Luciano Silvestri, and wish to thank many fellow-students for their great interest in Casimir forces and for their inspiring comments to the lectures I presented. I dedicate this contribution to my father, Italo Pinto (1928–2017), who passed away before the Proceedings could appear in print, for a lifetime of steadfast encouragement and support in the pursuit of my dreams to investigate the secrets of the universe and communicate that enthusiasm and curiosity to others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinto, F. (2018). Chapter 8 Casimir Forces: Fundamental Theory, Computation, and Nanodevice Applications. In: Di Bartolo, B., Silvestri, L., Cesaria, M., Collins, J. (eds) Quantum Nano-Photonics. NATO 2017. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1544-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1544-5_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1543-8

  • Online ISBN: 978-94-024-1544-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics