Skip to main content

Modelling of Coloured Metal Surfaces by Plasmonics Nanoparticles

  • Conference paper
  • First Online:
Quantum Nano-Photonics (NATO 2017)

Abstract

Metallic nanoparticles (NPs) dispersed in glass have been used since Romans times to color glasses [1]. With the recent development of metasurfaces, metallic and dielectric nanostructures have been proposed to color surfaces [2]. The excitation of resonant modes in the nanostructures is responsible for selective absorption of the incident light, thus causing the color creation. Top-down techniques based on lithography allow achieving highly saturated colors with a high resolution due to the deterministic patterning, but they are not suited for large-scale applications, such as the coloring of large surfaces. Furthermore, lithographic techniques are not suited to create metallic nanostructures on a substrate of the same metal. Metal nanostructures on metal can generate colors if their shape can support a localized surface plasmon resonance (LSPR). For example, this is valid for NPs of spherical shape slightly embedded on the substrate. In fact, when the embedding increases the resonance condition vanishes (an embedding increase corresponds to a transition from a spherical shape to a hemispherical shape) and the color disappears. This configuration has never been investigated theoretically. We recently proposed a bottom-up laser technique in the picosecond regime to create NPs on the metallic surface (laser-induced nanostructures) through a process of ablation and re-deposition, which is suited for mass production [3]. By tuning the laser properties, it is possible to control the NPs such that their size and density fall in the range of dimensions supporting LSPR, thus producing colors. This is shown in the palette realized on silver at the Royal Canadian Mint in Fig. 1a [3]. SEM images of these colored metallic surfaces reveal the presence of NPs of two sizes, i.e., medium and small, with radii R m and R s, respectively. Based on this information, we simulated the optical response of silver NPs distributed on a flat silver surface by using an in-house parallel 3D-FDTD code running on IBM BlueGene/Q (SOSCIP). Medium NPs were embedded by 30% of their radius, while small NPs were embedded by 0.5–3.5 nm. The simulation domain was discretized with a space-step from 0.125 to 0.5 nm to achieve convergent results, and we arranged the NPs following a hexagonal lattice in the xz-plane with a center-to-center inter-distance of D m and D s for medium and small NPs, respectively. In order to apply periodic boundary conditions, we needed D mD s to be an integer number. We modeled silver using the Drude+2CP model [4]. In Fig. 1b we show the field distribution at 390 nm for an xz-plane cut through the center of the small NPs. By averaging the reflectance over the embedding level of the small NPs, we obtained the average reflectance curves and the associated colors shown in Fig. 1c. The averaging washes out the effect of the small NPs, thus highlighting the major role in the color formation played by the medium NPs. The simulated palette in Fig. 1c reveals the same qualitative transition from blue to yellow observed in the experimental palette in Fig. 1a, thus identifying plasmonic resonances in arrangements of NPs as responsible for color creation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber DJ, Freestone IC (1990) An investigation of the origin of the color of the Lycurgus cup by analytical transmission electron-microscopy. Archaeometry 1:33–45

    Article  Google Scholar 

  2. Zhao Y, Zhao Y, Hu S, Lv J, Ying Y, Gervinskas G, Si G (2017) Artificial structural color pixels: a review. Materials 10:944

    Article  ADS  Google Scholar 

  3. Guay J-M, Calà Lesina A, Côté G, Charron M, Poitras D, Ramunno L, Weck A (2017) Laser-induced plasmonic colours on metals. Nat Commun 8:16095

    Article  ADS  Google Scholar 

  4. Calà Lesina A, Vaccari A, Berini P, Ramunno L (2015) On the convergence and accuracy of the FDTD method for nanoplasmonics. Opt Express 23:10481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Calà Lesina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lesina, A.C., Guay, JM., Weck, A., Berini, P., Ramunno, L. (2018). Modelling of Coloured Metal Surfaces by Plasmonics Nanoparticles. In: Di Bartolo, B., Silvestri, L., Cesaria, M., Collins, J. (eds) Quantum Nano-Photonics. NATO 2017. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1544-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1544-5_19

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1543-8

  • Online ISBN: 978-94-024-1544-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics