Skip to main content

Chapter 16 Performance of Nd3+ As Structural Probe of Rare-Earth Distribution in Transparent Nanostructured Glass-Ceramics

  • Conference paper
  • First Online:
Quantum Nano-Photonics (NATO 2017)

Abstract

Nanostructured glass-ceramics obtained by the adequate heat treatment of a Nd3+-doped glass with composition SiO2-Al2O3-Na2O-LaF3 have been investigated by several techniques. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM) show that the precipitated nanocrystals are LaF3 with a crystal size between 9 and 13 nm. Furthermore, energy dispersive X-ray (EDX) analysis shows the incorporation of Nd3+ ions into the LaF3 nano-crystals. A detailed optical characterization clearly shows that Nd3+ ions in glass-ceramics are incorporated in both crystalline and amorphous phases. Steady-state and time-resolved site-selective laser spectroscopies allow to isolate unambiguously the emission of Nd3+ ions in LaF3 nanocrystals which shows extremely well defined spectra, similar to those obtained for pure LaF3 crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, New York

    Book  Google Scholar 

  2. Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273:1185–1189

    Article  ADS  Google Scholar 

  3. Desurvire E (1994) Erbium-doped fiber amplifiers: principles and applications. Wiley, New York

    Google Scholar 

  4. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065

    Article  ADS  Google Scholar 

  5. Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173–201

    Article  Google Scholar 

  6. de Pablos-Martin A, Ferrari M, Pascual MJ, Righini GC (2015) Glass-ceramics: a class of nanostructured materials for photonics. Rivista del Nuovo Cimento 38:311–369

    ADS  Google Scholar 

  7. Fedorov PP, Luginina AA, Popov AI (2015) Transparent oxyfluoride glass ceramics. J Fluor Chem 172:22–50

    Article  Google Scholar 

  8. Wang Y, Ohwaki J (1993) New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. J. App Phys Lett 63:3268–3270

    Article  ADS  Google Scholar 

  9. Chen D, Yu Y, Huang P, Lin H, Shan Z, Wang Y (2010) Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode. Acta Mater 58:3035–3041

    Article  Google Scholar 

  10. Luo Q, Qiao X, Fan X, Yang H, Zhang X, Cui S, Wang L, Wang G (2009) Luminescence behavior of Ce3+ and Dy3+ codoped oxyfluoride glasses and glass ceramics containing LaF3 nanocrystals. J Appl Phys 105:043506

    Article  ADS  Google Scholar 

  11. Velazquez JJ, Rodriguez VD, Yanes AC, del-Castillo J, Mendez-Ramos J (2010) Increase in the Tb3+ green emission in SiO2-LaF3 nano-glass-ceramics by codoping with Dy3+ ions. J Appl Phys 108:113530

    Article  ADS  Google Scholar 

  12. Secu M, Secu CE, Polosan S, Aldica G, Chica C (2009) Crystallization and spectroscopic properties of Eu-doped CaF2 nanocrystals in transparent oxyfluoride glass-ceramics. J Non-Cryst Solids 355:1869–1872

    Article  ADS  Google Scholar 

  13. Sun X, Gu M, Huang S, Jin X, Lui X, Liu B, Ni C (2009) Luminescence behavior of Tb3+ ions in transparent glass and glass-ceramics containing CaF2 nanocrystals. J Lumin 129:773–777

    Article  Google Scholar 

  14. Qiao X, Fan X, Wang M (2006) Luminescence behavior of Er3+ in glass ceramics containing BaF2 nanocrystals. Scripta Mater 55:211–216

    Article  Google Scholar 

  15. Luo Q, Fan X, Qiao X, Yang H, Wang M, Zhang X (2009) Eu2+-doped glass ceramics containing BaF2 nanocrystals as a potential blue phosphor for UV-LED. J Am Ceram Soc 92:942–944

    Article  Google Scholar 

  16. Goncalves MC, Santos LF, Almeida RM (2002) Rare-earth-doped transparent glass ceramics. CR Chimie 5:845–854

    Article  Google Scholar 

  17. de Pablos-Martín A, Durán A, Pascual MJ (2012) Nanocrystallisation in oxyfluoride systems: mechanisms of crystallisation and photonic properties. Int Mater Rev 57:165–186

    Article  Google Scholar 

  18. Russell HN, Saunders FA (1925) New regularities in the spectra of the alkaline earths. Astrophys J 61:38–69

    Article  ADS  Google Scholar 

  19. Weber MJ (1990) Science and technology of laser glass. J Non-Cryst Solids 123:208–222

    Article  ADS  Google Scholar 

  20. Jacobs RR, Weber MJ (1976) Dependence of the 4F3/2→ 4I11/2 induced-emission cross section for Nd3+ on glass composition. IEEE J Quantum Electron QE-12:102–111

    Article  ADS  Google Scholar 

  21. Gorni G, Velázquez JJ, Mather GC, Durán A, Chen G, Sundararajan M, Balda R, Fernández J, Pascual MJ (2017) Selective excitation in transparent oxyfluoride glass-ceramics doped with Nd3+. J Eur Ceram Soc 37:1695–1706

    Article  Google Scholar 

  22. Cullity D (1978) Elements of X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  23. Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750–761

    Article  ADS  Google Scholar 

  24. Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37:511–520

    Article  ADS  Google Scholar 

  25. Carnall WT, Crosswhite H, Crosswhite HM (1977) Energy level structure and transition probabilities of the trivalent lanthanides in LaF3. Argonne National Laboratory, Argonne

    Google Scholar 

  26. Nachimuthu P, Jagannathan R (1999) Judd-Ofelt parameters, hypersensitivity, and emission characteristics of Ln3+ (Nd3+, Ho3+, and Er3+) ions doped in PbO-PbF2 glasses. J Am Soc 82(2):387–392

    Google Scholar 

  27. Mason SF, Peacock RD, Stewart B (1975) Ligand-polarization contributions to the intensity of hypersensitive trivalent lanthanide transitions. Mol Phys 30:1829–1841

    Article  ADS  Google Scholar 

  28. Krupke WF (1974) Induced emission cross-sections in neodymium laser glasses. IEEE J Quantum Electron QE-10:450–457

    Article  ADS  Google Scholar 

  29. Erhmann PR, Campell JH (2002) Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses. J Am Ceram Soc 85:1061–1069

    Article  Google Scholar 

  30. Dmitruk MV, Kaminskii AA (1968) Stimulated emission from LaF3-Nd3+ crystal lasers. Sov Phys JET 26(3):531–533

    ADS  Google Scholar 

  31. Hong JQ, Zhang LH, Zhang PX, Wang YQ, Hang Y (2015) Growth, optical characterization and evaluation of laser properties of Nd: LaF3 crystal. J Alloy Comp 646:706–709

    Article  Google Scholar 

  32. de Pablos-Martín A, García MA, Muñoz-Noval A, Castro GR, Pascual MJ, Durán A (2014) Analysis of the distribution of Tm3+ ions in LaF3 containing transparent glass-ceramics through X-ray absorption spectroscopy. J Non-Cryst Solids 384:83–87

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Government MEC under Projects MAT2013-48246-C2-2-P and MAT2013-48246-C2-1-P and the University of the Basque Country PPG17/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolindes Balda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balda, R., Gorni, G., Velázquez, J.J., Pascual, M.J., Durán, A., Fernández, J. (2018). Chapter 16 Performance of Nd3+ As Structural Probe of Rare-Earth Distribution in Transparent Nanostructured Glass-Ceramics. In: Di Bartolo, B., Silvestri, L., Cesaria, M., Collins, J. (eds) Quantum Nano-Photonics. NATO 2017. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1544-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1544-5_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1543-8

  • Online ISBN: 978-94-024-1544-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics