Skip to main content

Chapter 13 Waveguide Integrated Superconducting Single Photon Detectors

  • Conference paper
  • First Online:
Quantum Nano-Photonics (NATO 2017)

Abstract

Nanophotonic circuits employ waveguiding devices to route light across quasi-planar integrated optical chips in analogy to electrical wires in integrated electrical circuits. Using materials with high refractive index allows for confining light into sub-wavelength dimensions as efficient optical wires. Interaction with the environment is possible through near-field coupling to the evanescent tail of propagating optical modes, given that the measurable system is close to the waveguide surface. The interaction length can then be conveniently tailored by simply choosing a sufficiently long waveguide. This approach is particularly interesting for designing highly sensitive detectors which are able to register individual photons. Because nanophotonic circuits are well-suited for the study of single photon effects on chip, such detectors constitute a fundamental building block for emerging quantum photonic technologies. Here I introduce the concept of waveguide integrated single photon detectors, with a focus on superconducting nanowire single photon counters. The chapter covers the basics of single photon threshold detection, as well as advanced designs for multi-photon and coherent detection. The co-integration with nanophotonic circuits to realize hybrid systems enables advanced on-chip platforms for emerging applications in integrated quantum photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hadfield RH (2009) Single-photon detectors for optical quantum information applications. Nat Photonics 3:696–705

    Article  ADS  Google Scholar 

  2. Eisaman MD, Fan J, Migdall A, Polyakov SV (2011) Single-photon sources and detectors. Rev Sci Instrum 82:071101

    Article  ADS  Google Scholar 

  3. Eraerds P, Legré M, Zhang J (2010) Photon counting OTDR: advantages and limitations. J Light Technol 28:952–964

    Article  Google Scholar 

  4. Stellari F, Song P, Weger A (2011) Single photon detectors for ultra low voltage time-resolved emission measurements. IEEE J Quantum Electron 47:841–848

    Article  ADS  Google Scholar 

  5. O’Brien JL (2007) Optical quantum computing. Science 318:1567–1571

    Article  ADS  Google Scholar 

  6. Knill E, Laflamme R, Milburn G (2001) A scheme for efficient quantum computation with linear optics. Nature 409:46

    Article  ADS  Google Scholar 

  7. Takesue H et al (2007) Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat Photonics 1:343–348

    Article  ADS  Google Scholar 

  8. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145–195

    Article  ADS  Google Scholar 

  9. Korneev A et al (2007) Single-photon detection system for quantum optics applications. IEEE J Sel Top Quantum Electron 13:944–951

    Article  ADS  Google Scholar 

  10. Giovannetti V, Lloyd S, Maccone L (2011) Advances in quantum metrology. Nat Photonics 5:222–229

    Article  ADS  Google Scholar 

  11. Gaggero A et al (2010) Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications. Appl Phys Lett 97:151108

    Article  ADS  Google Scholar 

  12. Natarajan CM et al (2010) Operating quantum waveguide circuits with superconducting single-photon detectors. Appl Phys Lett 96:211101

    Article  ADS  Google Scholar 

  13. Itzler M a et al (2011) Advances in InGaAsP-based avalanche diode single photon detectors. J Mod Opt 58:174–200

    Article  ADS  Google Scholar 

  14. Gol’tsman GN et al (2001) Picosecond superconducting single-photon optical detector. Appl Phys Lett 79:705

    Article  ADS  Google Scholar 

  15. Marsili F et al (2013) Detecting single infrared photons with 93% system efficiency. Nat Photonics 7:210–214

    Article  ADS  Google Scholar 

  16. Hu X, Holzwarth CW, Masciarelli D, Dauler EA, Berggren KK (2009) Efficiently coupling light to superconducting nanowire single-photon detectors. IEEE Trans Appl Supercond 19:336–340

    Article  ADS  Google Scholar 

  17. Sprengers JP et al (2011) Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl Phys Lett 99:181110

    Article  ADS  Google Scholar 

  18. Gerrits T et al (2011) On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Phys Rev A 84:060301

    Article  ADS  Google Scholar 

  19. Tanner MG et al (2012) A superconducting nanowire single photon detector on lithium niobate. Nanotechnology 23:505201

    Article  Google Scholar 

  20. Schuck C, Pernice WHP, Tang HX (2013) NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits. Appl Phys Lett 102:051101

    Article  ADS  Google Scholar 

  21. Ferrari S, Kahl O, Kovalyuk V, Goltsman GN, Korneev A, Pernice WHP (2015) Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires. Appl Phys Lett 106:151101

    Article  ADS  Google Scholar 

  22. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    Article  ADS  Google Scholar 

  23. Akhlaghi MK, Schelew E, Young JF (2015) Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation. Nat Commun 6:8233

    Article  ADS  Google Scholar 

  24. Vetter A, Ferrari S, Rath P, Alaee R, Kahl O, Kovalyuk V, Diewald S, Goltsman GN, Korneev A, Rockstuhl C, Pernice WHP (2016) Cavity-enhanced and ultrafast superconducting single-photon detectors. Nano Lett 16:7085

    Article  ADS  Google Scholar 

  25. Kahl O, Ferrari S, Kovalyuk V, Vetter A, Lewes-Malandrakis G et al (2017) Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits. Optica 4:557–562

    Article  Google Scholar 

  26. Jacobs SF (1988) Optical heterodyne (coherent) detection. Am J Phys 56:235–245

    Article  ADS  Google Scholar 

  27. Luu JX, Jiang L (2006) Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays. Appl Opt 45:3798–3804

    Article  ADS  Google Scholar 

  28. Kovalyuk V, Ferrari S, Kahl O, Semenov A, Shcherbatenko M et al (2017) On-chip coherent detection with quantum limited sensitivity. Sci Rep 7(4812):4812

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram H. P. Pernice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pernice, W.H.P. (2018). Chapter 13 Waveguide Integrated Superconducting Single Photon Detectors. In: Di Bartolo, B., Silvestri, L., Cesaria, M., Collins, J. (eds) Quantum Nano-Photonics. NATO 2017. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1544-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1544-5_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1543-8

  • Online ISBN: 978-94-024-1544-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics