Advertisement

Chapter 12 Semiconductor Nanophotonics Using Surface Polaritons

  • Thomas G. FollandEmail author
  • Joshua D. Caldwell
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The properties of crystalline materials are dictated by the physical arrangement and behaviour of their constituent atoms. The behaviour of electrons and phonons (lattice vibrations), generally dominate the optoelectronic properties of a material. Electrons typically occupy either bound states, where they are unable to move and contribute to charge transfer, or in a delocalised state, where they can propagate through the lattice and carry electric current. These states form energy bands, called valence and conduction bands (see Fig. 12.1a), and the energies of these bands are one of the key ways of classifying materials. In a metal, these bands of energies overlap, and as a result, electrons are always able to freely propagate throughout the material. On the other hand, in an insulator these bands are separated by an energy difference (the band gap) and there is a small electronic density of states near the valence and conduction band edges. Semiconductors exist in-between these two extremes. They possess a band gap, but charge carriers can be moved between bands through either external stimuli or during the growth process via doping. This means that whilst semiconductors intrinsically behave as insulators, perturbations induced by thermal energy, light, dopants, or an electric field can switch them into acting as a conductor. Furthermore, in polar semiconductors the charge separation between the ionic lattice sites allow for crystalline vibrations (phonons) to couple with infrared to terahertz light. This broad range of interactions is what has made semiconductors an integral part of electronics, light emitting diodes, lasers, detectors and photovoltaics.

Notes

Acknowledgements

Both JDC and TGF acknowledge support from the School of Engineering at Vanderbilt University.

References

  1. 1.
    Greffet J-J et al (2002) Coherent emission of light by thermal sources. Nature 416(6876):61–64ADSCrossRefGoogle Scholar
  2. 2.
    Wang T et al (2017) Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photonics 4(7):1753–1760CrossRefGoogle Scholar
  3. 3.
    Schuller JA et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204ADSCrossRefGoogle Scholar
  4. 4.
    Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13:139–150ADSCrossRefGoogle Scholar
  5. 5.
    Ferrera M et al (2016) Dynamic nanophotonics. J Opt Soc Am B 34(1):95–103ADSCrossRefGoogle Scholar
  6. 6.
    Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Opt Mater 24:OP98–OP120Google Scholar
  7. 7.
    Poddubny A et al (2013) Hyperbolic metamaterials. Nat Photonics 7:948–957ADSCrossRefGoogle Scholar
  8. 8.
    Li P et al (2015) Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat Commun 6:7507CrossRefGoogle Scholar
  9. 9.
    Liu Z et al (2007) Far-field optical hyperlens magnifying sub-diffraction limited objects. Science 315:1686ADSCrossRefGoogle Scholar
  10. 10.
    Yariv A, Yeh P, Yariv A (2007) Photonics: optical electronics in modern communications. In: The Oxford series in electrical and computer engineering, 6th edn. New York, Oxford University Press xii, 836 pGoogle Scholar
  11. 11.
    Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York xxi, 808 pzbMATHGoogle Scholar
  12. 12.
    Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, Hoboken xix, 680 pzbMATHGoogle Scholar
  13. 13.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York xxiv, 223 pCrossRefGoogle Scholar
  14. 14.
    Scharte M et al (2001) Do Mie plasmons have a longer lifetime on resonance than off resonance? Appl Phys B 73:305–310ADSCrossRefGoogle Scholar
  15. 15.
    Woessner A et al (2015) Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat Mater 14:421–425ADSCrossRefGoogle Scholar
  16. 16.
    Law S et al (2014) Mid-infrared designer metals. Opt Express 20:12155–12165ADSCrossRefGoogle Scholar
  17. 17.
    Law S, Liu R, Wasserman D (2014) Doped semiconductors with band-edge plasma frequencies. J Vac Sci Technol B 32:52601CrossRefGoogle Scholar
  18. 18.
    Law S et al (2014) All-semiconductor negative index plasmonic absorbers. Phys Rev Lett 112:17401ADSCrossRefGoogle Scholar
  19. 19.
    Chen J et al (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487:77–81ADSCrossRefGoogle Scholar
  20. 20.
    Dai S et al (2015) Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol 10:682–686ADSCrossRefGoogle Scholar
  21. 21.
    Fei Z et al (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487:82–85ADSCrossRefGoogle Scholar
  22. 22.
    Spann BT et al (2016) Photoinduced tunability of the reststrahlen band in 4H-SiC. Phys Rev B 93:085205ADSCrossRefGoogle Scholar
  23. 23.
    Stroscio MA, Dutta M (2001) Phonons Nanostruct. Cambridge University PressGoogle Scholar
  24. 24.
    Khurgin JB, Boltasseva A (2012) Reflecting upon the losses in plasmonics and metamaterials. MRS Bull 37:768–779CrossRefGoogle Scholar
  25. 25.
    Caldwell JD et al (2016) Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nat Nanotechnol 11:9–15ADSCrossRefGoogle Scholar
  26. 26.
    Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 7th expanded ed. Cambridge University Press, Cambridge/New York, xxxiii, 952 pGoogle Scholar
  27. 27.
    Moitra P et al (2013) Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics 7:791–795ADSCrossRefGoogle Scholar
  28. 28.
    Valentine J et al (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571ADSCrossRefGoogle Scholar
  29. 29.
    Bezares FJ et al (2013) Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays. Opt Express 21(23):27587–27601ADSCrossRefGoogle Scholar
  30. 30.
    Spinelli P, Verschuuren MA, Polman A (2012) Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat Commun 3:692ADSCrossRefGoogle Scholar
  31. 31.
    Brongersma ML, Kik PG (2010) Surface plasmon nanophotonics. Springer, New York, p 268Google Scholar
  32. 32.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer tracts in modern physics. Springer-Verlag, Berlin/New York x, 136 pCrossRefGoogle Scholar
  33. 33.
    Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley, WeinheimGoogle Scholar
  34. 34.
    Caldwell JD et al (2011) Large-area plasmonic hot-spot arrays: sub-2 nm interpillar spacings with plasma enhanced atomic layer deposition of ag on periodic arrays of Si nanopillars. Opt Express 19(27):26056ADSCrossRefGoogle Scholar
  35. 35.
    Caldwell JD, et al (2011) Surface enhanced raman scattering enhancements from silver atomic layer deposition coated nanowires, in CLEO:2011 – laser applications to photonic applications. Optical Society of America. p. paper CMX2Google Scholar
  36. 36.
    Adams SM et al (2012) Non-lithographic SERS substrates: tailoring surface chemistry for au nanoparticle cluster assembly. Small 8(14):2239CrossRefGoogle Scholar
  37. 37.
    Fontana J et al (2013) Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers. Appl Phys Lett 102:201606ADSCrossRefGoogle Scholar
  38. 38.
    Dai S et al (2014) Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science (Washington) 343(6175):1125–1129ADSCrossRefGoogle Scholar
  39. 39.
    Hillenbrand R, Taubner T, Keilmann F (2002) Phonon-enhanced light-matter interaction at the nanometre scale. Nature 418(6894):159–162ADSCrossRefGoogle Scholar
  40. 40.
    Taubner T, Keilmann F, Hillenbrand R (2004) Nanomechanical resonance tuning and phase effects in optical near-field interaction. Nano Lett 4(9):1669–1672ADSCrossRefGoogle Scholar
  41. 41.
    Wang T et al (2013) Optical properties of single infrared resonant circular microcavities for surface phonon Polaritons. Nano Lett 13(11):5051–5055ADSCrossRefGoogle Scholar
  42. 42.
    Giles AJ et al (2016) Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett 16(6):3858–3865ADSCrossRefGoogle Scholar
  43. 43.
    Giles AJ et al (2017) Ultra-low-loss polaritons in isotopically pure materials: a new approach. Nat Mater 17:134ADSCrossRefGoogle Scholar
  44. 44.
    Brown LV et al (2017) Nanoscale mapping and spectroscopy of non-radiative hyperbolic modes in hexagonal boron nitride nanostructures. To be submittedGoogle Scholar
  45. 45.
    Centrone A (2015) Infrared imaging and spectroscopy beyond the diffraction limit. Annu Rev Anal Chem 8:101–126CrossRefGoogle Scholar
  46. 46.
    Chae J et al (2017) Nanophotonic atomic force microscope transducers enable chemical composition and thermal conductivity measurements at the nanoscale. Nano Lett 17: 5587–5594ADSCrossRefGoogle Scholar
  47. 47.
    Katzenmeyer AM, Aksyuk V, Centrone A (2013) Nanoscale infrared spectroscopy: improving the spectral range of the Photothermal induced resonance technique. Anal Chem 85(4):1972–1979CrossRefGoogle Scholar
  48. 48.
    Katzenmeyer AM et al (2015) Absorption Spectrosocyp and imaging from the visible through mid-infrared with 20 nm resolution. Anal Chem 87(6):3154–3159CrossRefGoogle Scholar
  49. 49.
    Lahiri B et al (2013) Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique. Nano Lett 13(7):3218–3224ADSCrossRefGoogle Scholar
  50. 50.
    Caldwell JD et al (2015) Low-loss, infrared and terahertz nanophotonics with surface phonon polaritons. Nano 4:44–68Google Scholar
  51. 51.
    Lagois J, Fischer B (1978) Dispersion theory of surface-exciton polaritons. Phys Rev B 17(10):3814–3823ADSCrossRefGoogle Scholar
  52. 52.
    Basov DN, Fogler MM, García de Abajo FJ (2016) Polaritons in van der Waals materials. Science 354(6309):195CrossRefGoogle Scholar
  53. 53.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6(11):749–758ADSCrossRefGoogle Scholar
  54. 54.
    Palik ED (1985) Handbook of optical constants of solids. Academic, OrlandoGoogle Scholar
  55. 55.
    Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science (Washington) 331(6015):290–291ADSCrossRefGoogle Scholar
  56. 56.
    Law S, Yu L, Wasserman D (2013) Epitaxial growth of engineered metals for mid-infrared plasmonics. J Vac Sci Technol B 31:03C121CrossRefGoogle Scholar
  57. 57.
    Dunkelberger AD, et al (2017) Active tuning of surface phonon polariton resonances via carrier photoinjection. ArXiv Condensed Matter e-prints, under review Nature Photonics: p arXiv:1705.05980Google Scholar
  58. 58.
    Traviss D et al (2013) Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon near zero regime. Appl Phys Lett 102(12):121112ADSCrossRefGoogle Scholar
  59. 59.
    Kim J et al (2014) Optical properties of gallium-doped zinc oxide – a low-loss plasmonic material: first principles theory and experiment. Phys Rev X 3:041037Google Scholar
  60. 60.
    Dionne JA et al (2009) PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett 9(2):897–902ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Silveirinha MG, Engheta N (2006) Tunneling of electromagnetic energy through sub-wavelength channels and bends using epsilon-near-zero (ENZ) materials. Phys Rev Lett 97:157403ADSCrossRefGoogle Scholar
  62. 62.
    Kim J et al (2016) The role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 3(3):339CrossRefGoogle Scholar
  63. 63.
    Boyuk DS, Chou L-W, Filler MA (2016) Strong near-field coupling of plasmonic resonators embedded in Si nanowires. ACS Photonics 3(2):184–189CrossRefGoogle Scholar
  64. 64.
    Law S et al (2013) All-semiconductor plasmonic nanoantennas for infrared sensing. Nano Lett 13(9):4569–4574ADSCrossRefGoogle Scholar
  65. 65.
    Jun YC et al (2012) Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Opt Express 20(2):1903ADSCrossRefGoogle Scholar
  66. 66.
    Offermans P, Crego-Calama M, Brongersma SH (2010) Gas detection with vertical InAs nanowire arrays. Nano Lett 10(7):2412–2415ADSCrossRefGoogle Scholar
  67. 67.
    Adams DC et al (2010) Plasmonic mid-infrared beam steering. Appl Phys Lett 96:201112ADSCrossRefGoogle Scholar
  68. 68.
    Kirste R et al (2013) Ge doped GaN with controllable high carrier concentration for plasmonic applications. Appl Phys Lett 103(24):242107ADSCrossRefGoogle Scholar
  69. 69.
    Jefferson PH et al (2008) Bandgap and effective mass of epitaxial cadmium oxide. Appl Phys Lett 92:022101ADSCrossRefGoogle Scholar
  70. 70.
    Sachet E et al (2015) Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat Mater 14(4):414–420ADSCrossRefGoogle Scholar
  71. 71.
    Low T et al (2017) Polaritons in layered two-dimensional materials. Nat Mater 16:182–194ADSCrossRefGoogle Scholar
  72. 72.
    Basov DN et al (2014) Colloquium: graphene spectroscopy. Rev Mod Phys 86:959–994ADSCrossRefGoogle Scholar
  73. 73.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science (Washington) 332:1291–1294ADSCrossRefGoogle Scholar
  74. 74.
    Yao Y et al (2013) Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13(3):1257–1264ADSCrossRefGoogle Scholar
  75. 75.
    Jadidi MM et al (2015) Tunable terahertz hybrid metal-graphene plasmons. Nano Lett 15:7099–7104ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    Koppens FHL et al (2014) Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9:780–793ADSCrossRefGoogle Scholar
  77. 77.
    Sun Z, Martinez A, Wang F (2016) Optical modulators with 2D layered materials. Nat Photonics 10:227–238ADSCrossRefGoogle Scholar
  78. 78.
    Khurgin JB, Sun G (2011) Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl Phys Lett 99:211106ADSCrossRefGoogle Scholar
  79. 79.
    Caldwell JD et al (2013) Low-loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon Polariton Nanopillar resonators. Nano Lett 13(8):3690–3697ADSCrossRefGoogle Scholar
  80. 80.
    Caldwell JD et al (2014) Sub-diffractional, volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat Commun 5:5221CrossRefGoogle Scholar
  81. 81.
    Ellis CT et al (2016) Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures. Sci Rep 6:32959ADSCrossRefGoogle Scholar
  82. 82.
    Razdolski I et al (2016) Resonant enhancement of second-harmonic generation in the mid-infrared using localized surface phonon polaritons in subdiffractional nanostructures. Nano Lett 16:6954–6959ADSCrossRefGoogle Scholar
  83. 83.
    Chen Y et al (2014) Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications. ACS Photonics 1(8):718–724CrossRefGoogle Scholar
  84. 84.
    Michel A-KU et al (2013) Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett 13(8):3470–3475ADSCrossRefGoogle Scholar
  85. 85.
    Li P, Taubner T (2012) Multi-wavelength superlensing with layered phonon-resonant dielectrics. Opt Express 20(S3):A11787ADSCrossRefGoogle Scholar
  86. 86.
    Tiwald TE et al (1999) Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys Rev B 60(16):11464–11474ADSCrossRefGoogle Scholar
  87. 87.
    Adachi S (1999) The reststrahlen region. In: Optical properties of crystalline and amorphous semiconductors: materials and fundamental principles. Springer Science+Business Media, LLC, New York, pp 33–61Google Scholar
  88. 88.
    Yoxall E et al (2015) Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat Photonics 9:674–678ADSCrossRefGoogle Scholar
  89. 89.
    Li P et al (2016) Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat Mater 15:870–875ADSCrossRefGoogle Scholar
  90. 90.
    Caldwell JD et al (2007) Free carrier distribution profiling of 4H-SiC substrates using a commercial optical scanner. J Appl Phys 101:093506ADSCrossRefGoogle Scholar
  91. 91.
    Harima H, Nakashima S, Uemura T (1995) Raman-scattering from anisotropic LO-phonon-plasmon-coupled mode in n-type 4h-SiC and 6h-SiC. J Appl Phys 78:1996–2005ADSCrossRefGoogle Scholar
  92. 92.
    Maier SA (2007) Plasmonics: fundamentals and applications, 1st edn. Springer, BerlinCrossRefGoogle Scholar
  93. 93.
    Noginov M et al (2013) Focus issue: hyperbolic metamaterials. Opt Express 21(12): 14895–14897ADSCrossRefGoogle Scholar
  94. 94.
    Fisher RK, Gould RW (1969) Resonance cones in the field pattern of a short antenna in anisotropic plasma. Phys Rev Lett 22:1093–1095ADSCrossRefGoogle Scholar
  95. 95.
    Dai S et al (2015) Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat Commun 6:6963CrossRefGoogle Scholar
  96. 96.
    Ishii S et al (2013) Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser Photonics Rev 7:265–271ADSCrossRefGoogle Scholar
  97. 97.
    Shalaev VM et al (2005) Negative index of refraction in optical metamaterials. Opt Lett 30(24):3356–3358ADSCrossRefGoogle Scholar
  98. 98.
    Jacob Z et al (2010) Engineering photonic density of states using metamaterials. Appl Phys B 100(1):215–218ADSCrossRefGoogle Scholar
  99. 99.
    Sun J, Litchinitser NM, Zhou J (2014) Indefinite by nature: from ultraviolet to terahertz. ACS Photonics 1(4):293–303CrossRefGoogle Scholar
  100. 100.
    Korzeb K, Gajc M, Pawlak DA (2015) Compendium of natural hyperbolic materials. Opt Express 23(20):25406–25424ADSCrossRefGoogle Scholar
  101. 101.
    Ambrosio A et al (2017) Mechanical detection and imaging of hyperbolic phonon polaritons in hexagonal boron nitride. ACS Nano 11(9):8741–8746CrossRefGoogle Scholar
  102. 102.
    Xu XG et al (2014) One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat Commun 5:4782CrossRefGoogle Scholar
  103. 103.
    Xu XG, Tanur AE, Walker GC (2013) Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes. J Phys Chem A 117:3348–3354CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations