Skip to main content

Time Domain Versus Frequency Domain in the Characterization of Materials

  • Conference paper
  • First Online:
  • 793 Accesses

Abstract

The development of sampling oscilloscopes provided the possibility to measure dielectric relaxation processes in materials directly in the time domain. This allows using relaxation models in time. In complex systems, the use of non-Debye models, such as Kohlrausch-Williams-Watts is common. Simultaneously, the use of frequency domain measurements is becoming very useful, due to the possibility of using highly accurate impedancemeters. To obtain a complete characterization of the dielectric response, a large range of frequencies and temperatures must be used.The different regimes of the dielectric function can be observed and the dynamics of the relaxations can be determined, using modelling with different empirical models, such as Cole-Cole, Cole-Davidson and Havriliak-Negami. In this contribution, different examples of the use of time and frequency domain measurements are presented, showing the capability of both techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, London

    Google Scholar 

  2. Daniel V (1967) Dielectric relaxation. Academic, London

    Google Scholar 

  3. Kremer F, Arndt M (1997) Broadband dielectric measurements techniques. In: Runt JP, Fitzgerald JJ (eds) Dielectric spectroscopy of polymeric materials. American Chemical Society, Washington, DC

    Google Scholar 

  4. McCrum NG, Read BE, Williams G (1991) Anelastic and dielectric effects in polymeric solids. Wiley, New York

    Google Scholar 

  5. Westphal WB, von Hippel AR (1954) Dielectric materials and applications. MIT Press/Wiley, New York

    Google Scholar 

  6. Armstrong D, Race WP, Thirsk HR (1968) Determination of electrode impedance over an extended frequency range by alternating current bridge methods. Electrochem Acta 13:215–239

    Article  Google Scholar 

  7. Costa LC (1995) Propriedades eléctricas de vidros com alguns iões de terras raras. Ph.D. thesis, Aveiro

    Google Scholar 

  8. Calvert R (1948) A new technique in bridge measurements. Electron Eng 20:28–29

    Google Scholar 

  9. Henry F (1961) Développement de la métrologie hyperfréquences et application à l’étude de l’hydratation et la diffusion de l’eaudansles matériaux macromoléculaires. Ph.D. thesis, Paris

    Google Scholar 

  10. Macdonald D (2006) Reflections on the history of electrochemical impedance spectroscopy. Electrochem Acta 51:376–1388

    Google Scholar 

  11. Collin RE (1996) Foundations for microwave engineering. McGraw Hill, New York

    Google Scholar 

  12. McKubre MCH, Macdonald DD (2005) Impedance measurement techniques. In: Runt JP, Fitzgerald JJ (eds) Dielectric spectroscopy of polymeric materials. American Chemical Society, Washington, DC

    Google Scholar 

  13. Belatar J, Graça MPF, Costa LC, Achour ME, Brosseau C (2010) Electric modulus-based analysis of the dielectric relaxation in carbon black loaded polymer composites. J Appl Phys 107:124111

    Article  ADS  Google Scholar 

  14. Debye P (1913) Ver Deut Phys Gesell. 15:777, reprinted 1954 in collected papers of P. Debye, Interscience, New York

    Google Scholar 

  15. Kohlrausch R (1854) Theorie des elektrischen Rückstandes in der Leidner Flasche. Ann Phys Chem 91:56–82

    Article  ADS  Google Scholar 

  16. Williams G, Watts DC (1970) Non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Farad Soc 66:80–85

    Article  Google Scholar 

  17. Weron K (1991) A probabilistic mechanism hidden behind the universal power law for dielectric relaxation: general relaxation equation. J Phys Condens Matter 3:9151–9162

    Article  ADS  Google Scholar 

  18. Curie J (1889) Recherches sur le pouvoirinducteurspecifique et la conductibilite des corps cristallises. Ann Chim Phys 17:384–434

    Google Scholar 

  19. von Schweidler ER (1907) Studien über die Anomalien im Verhalten der Dielektrika. Ann Phys 329(14):711–770

    Article  Google Scholar 

  20. Brown WF (1956) Dielectrics, encyclopedia of physics, vol XVII. Springer, Berlin

    Google Scholar 

  21. Cole KS KS, Cole RH RH (1941) Dispersion and sbsorption in dielectrics-I alternating current characteristics. J Chem Phys 9(1941):341–252

    Article  ADS  Google Scholar 

  22. Davidson DW, Cole RH (1950) Dielectric relaxation in glycerol. J Chem Phys 18:1417–1419

    Article  ADS  Google Scholar 

  23. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210

    Article  Google Scholar 

  24. Bose TK, Delbos GG, Merabet M (1989) Dielectric properties of microemulsions by time domain spectroscopy. J Phys Chem 93:867–872

    Article  Google Scholar 

  25. Johari JP, Goldstein M (1970) Vicous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J Chem Phys 58(4):2372–2388

    Article  ADS  Google Scholar 

  26. Soreto Teixeira S, Graça MPF, Dionisio M, Ilcíkova M, Mosnacek J, Spitalsky Z, Krupa I, Costa LC (2014) Self-standing elastomeric composites based on lithium ferrites and their dielectric behavior. J Appl Phys 116:224102

    Google Scholar 

  27. Costa LC, Henry F (2003) Dielectric relaxation in lead borate and lead silicate glasses: identification of distinctive regimes of behaviour. Phys Chem Glasses 44(5):353–356

    Google Scholar 

  28. Leon C, Ngai KL (1999) Rapidity of the change of the Kohlrausch exponent of the α relaxation of glass-forming liquids at TB or Tβ and consequences. J Phys Chem B 103:4045–4051

    Article  Google Scholar 

  29. O’Connell PA, McKenna GB (1999) Arrhenius-type temperature dependence of the segmental relaxation below Tg. Chem Phys 110(22):11054–11060

    ADS  Google Scholar 

  30. Soreto Teixeira S, Graça MPF, Dionisio M, Ilcíkova M, Mosnacek J, Spitalsky Z, Krupa I, Costa LC (2014) Self-standing elastomeric composites based on lithium ferrites and their dielectricbehavior. J Appl Phys 116:224102

    Article  ADS  Google Scholar 

  31. Mendiratta SK, Costa LC (1991) Dielectric relaxation in glasses containing different relaxing species. J Non-Cryst Solids 131–133:990–993

    Article  ADS  Google Scholar 

  32. Costa LC, Mendiratta SK (1994) Dielectricbehaviour of Nd ions in the lead borate glass. J Non-Cryst Solids 172–174:1324–1327

    Article  ADS  Google Scholar 

  33. Berberian JG, Cole RH (1986) Approach to glassy behavior of dielectric relaxation in 3-bromopentane from 298 to 107 K. J Chem Phys 84(12):6921–6927

    Article  ADS  Google Scholar 

  34. Colmenero J (1991) α-relaxation and molecular dynamics in glass-forming polymeric systems. J Non-Cryst Solids 131–133:860–869

    Article  ADS  Google Scholar 

  35. Rendell RW, Ngai KL (1984) Relaxation in complex systems. In: Wright GB (ed) Office of naval research. Arlington, VA, Springfield

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, L.C. (2018). Time Domain Versus Frequency Domain in the Characterization of Materials. In: Petkov, P., Tsiulyanu, D., Popov, C., Kulisch, W. (eds) Advanced Nanotechnologies for Detection and Defence against CBRN Agents. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1298-7_13

Download citation

Publish with us

Policies and ethics