Advertisement

Rapid and Low-Cost Tools Derived from Plants to Face Emerging/Re-emerging Infectious Diseases and Bioterrorism Agents

  • Rosella Franconi
  • Elena Illiano
  • Francesca Paolini
  • Silvia Massa
  • Aldo Venuti
  • Olivia Costantina Demurtas
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Whether naturally occurring or man-made, biological threats pose a severe risk in an increasingly globalized world.

The dual-use nature of biological research, with its most recent advances in biotechnology (‘synthetic biology’, gene editing, nanotechnologies etc.) and the rapid diffusion of knowledge, raise proliferation concerns of biological weapons by non-state actors.

Thus, there is an urgent need to develop measures intended to enhance diagnostic, prophylactic and therapeutic capabilities and capacities to improve the ability of society to combat infectious diseases outbreaks, as well as to alleviate the effects of bioterrorism attacks.

We present here two examples of biotechnology usage for biodefence purposes: (i) plants as biofactories for the rapid production of improved biopharmaceuticals (‘Plant Molecular Farming’), and (ii) plant sequences as immune-modulating agents to enhance the efficacy of genetic vaccines.

These platforms represent two promising (and complementary) approaches for the rapid and low-cost production of countermeasures (diagnostics and vaccine candidates) against emerging, re-emerging and bioterrorism-related infections.

Keywords

Infectious disease SARS-CoV Biothreat Bioweapon Genetic vaccines Molecular farming Plant sequences Diagnostics 

References

  1. 1.
    Hays JN (2005) Epidemics and pandemics: their impacts on human history. ABC-CLIO, Santa BarbaraGoogle Scholar
  2. 2.
    Shanks GD, Brundage GF (2012) Pathogenic responses among young adults during the 1918 influenza pandemic. Emerg Infect Dis 18:201–207CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nii-Trebi NI (2017) Emerging and neglected infectious diseases: insights, advances, and challenges. BioMed Res Int 2017:5245021.  https://doi.org/10.1155/2017/5245021. 15 pCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barras V, Greub G (2014) History of biological warfare and bioterrorism. Clin Microbiol Infect 20(6):497–502.  https://doi.org/10.1111/1469-0691.12706 CrossRefPubMedGoogle Scholar
  5. 5.
    Mukunda G, Oye KA, Mohr SC (2009) What rough beast? Synthetic biology, uncertainty, and the future biosecurity. Polit Life Sci 28(2):2–26CrossRefGoogle Scholar
  6. 6.
    Rózsa L (2009) The motivation for biological aggression is an inherent and common aspect of the human behavioural repertoire. Med Hypotheses 72:217–219CrossRefPubMedGoogle Scholar
  7. 7.
    Lederberg J (1999) Introduction. In: Lederberg J (ed) Biological weapons. Limiting the threat. MIT, Cambridge, MA, pp 3–5Google Scholar
  8. 8.
    Arntzen C (2015) Plant-made pharmaceuticals: from ‘Edible Vaccines’ to Ebola therapeutics. Plant Biotechnol J 13(8):1013–1016CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rybicki EP (2014) Plant-based vaccines against viruses. Virol J 11:205.  https://doi.org/10.1186/s12985-014-0205-0 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Streatfield SJ, Kushnir N, Yusibov V (2015) Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. Plant Biotechnol J 13(8):1136–1159.  https://doi.org/10.1111/pbi.12475 CrossRefPubMedGoogle Scholar
  11. 11.
    De Martinis D, Rybicki EP, Fujiyama K et al (2016) Editorial: plant molecular farming: fast, scalable, cheap, sustainable. Front Plant Sci 7:1148.  https://doi.org/10.3389/fpls.2016.01148 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharmacogn Rev 6(11):1–5CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Franconi R, Demurtas OC, Massa S (2010) Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev Vaccines 9(8):887–892CrossRefGoogle Scholar
  14. 14.
    Yao J, Weng Y, Dickey A, Wang KY (2015) Plants as factories for human pharmaceuticals: applications and challenges. Int J Mol Sci 16(12):28549–28565.  https://doi.org/10.3390/ijms161226122 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lannoo N, Van Damme EJ (2015) Review/N-glycans: the making of a varied toolbox. Plant Sci 239:67–83.  https://doi.org/10.1016/j.plantsci.2015.06.023 CrossRefPubMedGoogle Scholar
  16. 16.
    Strasser R (2016) Plant protein glycosylation. Glycobiology 26(9):926–939CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schoberer J, Strasser R (2017) Plant glyco-biotechnology. Semin Cell Dev Biol. pii: S1084-9521(16)30360-3.  https://doi.org/10.1016/j.semcdb.2017.07.005
  18. 18.
    Sohrab SS, Suhail M, Kamal MA et al (2017) Edible vaccine: current status and future perspectives. Curr Drug Metab.  https://doi.org/10.2174/1389200218666170711121810
  19. 19.
    Shahid N, Daniell H (2016) Plant-based oral vaccines against zoonotic and non-zoonotic diseases. Plant Biotechnol J 14(11):2079–2099.  https://doi.org/10.1111/pbi.12604 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gleba Y, Klimyuk V, Marillonet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotech 18:134–241.  https://doi.org/10.1016/j.biotechadv.2010.01.005 CrossRefPubMedGoogle Scholar
  21. 21.
    Kopertekh L, Schiemann J (2017) Transient production of recombinant pharmaceutical proteins in plants: evolution and perspectives. Curr Med Chem.  https://doi.org/10.2174/0929867324666170718114724
  22. 22.
    Villani ME, Roggero P, Bitti O et al (2005) Immunomodulation of a plant virus infection by intrabodies selected in vitro from a stable single-framework phage display library. Plant Mol Biol 58:305–316CrossRefPubMedGoogle Scholar
  23. 23.
    Franconi R, Roggero P, Pirazzi P et al (1999) Functional expression in bacteria and in plants of an scFv antibody fragment against tospoviruses. Immunotechnology 4(3–4):189–201CrossRefPubMedGoogle Scholar
  24. 24.
    Franconi R, Venuti A (2006) HPV vaccines in plants: an appetising solution to control infection and associated cancers. In: Campo MS (ed) Papillomavirus research: from natural history to vaccines and beyond. Caister Academic Press, Norfolk, pp 357–372Google Scholar
  25. 25.
    Franconi R, Di Bonito P, Dibello F et al (2002) Plant-derived Human Papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res 62:3654–3658PubMedGoogle Scholar
  26. 26.
    Giorgi C, Franconi R, Rybicki EP (2010) HPV vaccines in plant. Expert Rev Vaccines 9(8):913–924CrossRefPubMedGoogle Scholar
  27. 27.
    Massa S, Franconi R, Brandi R et al (2007) Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine 25:3018–3021CrossRefPubMedGoogle Scholar
  28. 28.
    Venuti A, Massa S, Mett V et al (2009) An E7-based therapeutic vaccine protects mice against HPV16 associated cancer. Vaccine 27:3395–3397CrossRefPubMedGoogle Scholar
  29. 29.
    Demurtas OC, Massa S, Illiano E et al (2016) Antigen production in plant to tackle infectious diseases flare up: the case of SARS. Front Plant Sci 7:54.  https://doi.org/10.3389/fpls.2016.00054 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Peiris JS, Guan Y, Yuen KY (2004) Severe acute respiratory syndrome. Nat Med 10(12 Suppl):S88–S97.  https://doi.org/10.1038/nm1143 CrossRefPubMedGoogle Scholar
  31. 31.
    Centers for Disease Control and Prevention (CDC), Department of Health and Human Services (HHS) (2012) Possession, use, and transfer of select agents and toxins; biennial review. Final rule Fed Regist 77(194):61083–61115Google Scholar
  32. 32.
    Zumla A, Chan JF, Azhar EI et al (2016) Coronaviruses – drug discovery and therapeutic options. Nat Rev Drug Discov 15(5):327–347.  https://doi.org/10.1038/nrd.2015.37 CrossRefPubMedGoogle Scholar
  33. 33.
    Sheahan TP, Sims AC, Graham RL et al (2017) Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 9(396)Google Scholar
  34. 34.
    Bartlam M, Xu Y, Rao Z (2007) Structural proteomics of the SARS coronavirus: a model response to emerging infectious diseases. J Struct Funct Genom 8(2–3):85–97.  https://doi.org/10.1007/s10969-007-9024-5 CrossRefGoogle Scholar
  35. 35.
    Surjit M, Lal SK (2008) The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infect Genet Evol 8(4):397–405.  https://doi.org/10.1016/j.meegid.2007.07.004 CrossRefPubMedGoogle Scholar
  36. 36.
    Shin GC, Chung YS, Kim IS et al (2007) Antigenic characterization of severe acute respiratory syndrome-coronavirus nucleocapsid protein expressed in insect cells: the effect of phosphorylation on immunoreactivity and specificity. Virus Res 127(1):71–80.  https://doi.org/10.1016/j.virusres.2007.03.019 CrossRefPubMedGoogle Scholar
  37. 37.
    Liu J, Sun Y, Qi J et al (2010) The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes. J Infect Dis 202(8):1171–1180.  https://doi.org/10.1086/656315 CrossRefPubMedGoogle Scholar
  38. 38.
    Gimenez LG, Rojas A, Mendoza J et al (2009) Development of an enzyme-linked immunosorbent assay-based test with a cocktail of nucleocapsid and spike proteins for detection of severe acute respiratory syndrome-associated coronavirus-specific antibody. Clin Vaccine Immunol 6(2):241–245.  https://doi.org/10.1128/CVI.00252-08 CrossRefGoogle Scholar
  39. 39.
    Haynes LM, Miao C, Harcourt JL et al (2007) Recombinant protein-based assays for detection of antibodies to severe acute respiratory syndrome coronavirus spike and nucleocapsid proteins. Clin Vaccine Immunol 14(3):331–333.  https://doi.org/10.1128/CVI.00351-06 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Woo PCY, Lau SKP, Wong BHL et al (2004) Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clin Diagn Lab Immunol 11(4):665–668.  https://doi.org/10.1128/CDLI.11.4.665-668.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Carattoli A, Di Bonito P, Grasso F et al (2005) Recombinant protein-based ELISA and immuno-cytochemical assay for the diagnosis of SARS. J Med Virol 76(2):137–142.  https://doi.org/10.1002/jmv.20338 CrossRefPubMedGoogle Scholar
  42. 42.
    Li L, Petrovsky N (2017) Molecular adjuvants for DNA vaccines. Curr Issues Mol Biol 22:17–40CrossRefPubMedGoogle Scholar
  43. 43.
    Liu S, Wang S, Lu S (2016) DNA immunization as a technology platform for monoclonal antibody induction. Emerg Microbes Infect 5:e33.  https://doi.org/10.1038/emi.2016.27 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Suschak JJ, Williams JA, Schmaljohn CS (2017) Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccine Immunother 12:1–12.  https://doi.org/10.1080/21645515.2017.1330236 CrossRefGoogle Scholar
  45. 45.
    Franconi R, Spanò L, Venuti A, Massa S (2009) Vaccines based on genetic chimera of viral and/or tumoral antigens and plant proteins. European patent EP2456785Google Scholar
  46. 46.
    Massa S, Paolini F, Spanò L et al (2011) Mutants of plant genes for the development of cancer vaccines. Hum Vaccines 7:147–155CrossRefGoogle Scholar
  47. 47.
    Franconi R, Massa S, Venuti A (2016) Plant protein signal sequence as adjuvant in DNA vaccines. Patent pending, Submission N. 102016000131935 (29/12/2016)Google Scholar
  48. 48.
    Massa S, Paolini F, Curzio G et al (2017) A plant protein signal sequence improved humoral immune response to HPV prophylactic and therapeutic DNA vaccines. Hum Vaccine Immunother 13(2):271–282.  https://doi.org/10.1080/21645515.2017.1264766 CrossRefGoogle Scholar
  49. 49.
    Broderick KE, Humeau LM (2017) Enhanced delivery of DNA or RNA vaccines by electroporation. Methods Mol Biol 1499:193–200CrossRefPubMedGoogle Scholar
  50. 50.
    Trimble CL, Morrow MP, Kraynyak KA et al (2015) Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386:2078–2088.  https://doi.org/10.1016/S0140-6736(15)00239-1 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Graham RL, Donaldson EF, Baric RS (2013) A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 11(12):836–848.  https://doi.org/10.1038/nrmicro3143 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rosella Franconi
    • 1
  • Elena Illiano
    • 1
  • Francesca Paolini
    • 2
  • Silvia Massa
    • 1
  • Aldo Venuti
    • 2
  • Olivia Costantina Demurtas
    • 1
  1. 1.Department for SustainabilityItalian National Agency for New Technologies, Energy and the Environment (ENEA), ‘Casaccia’ Research CentreRomeItaly
  2. 2.HPV-UNIT – RIDAIT Department, UOSD Tumor Immunology and ImmunotherapyRegina Elena National Cancer InstituteRomeItaly

Personalised recommendations