Advertisement

1, 3, 5-Triamino-2, 4, 6-Trinitrobenzene (TATB)

  • Dabir S. ViswanathEmail author
  • Tushar K. Ghosh
  • Veera M. Boddu
Chapter

Abstract

This chapter reviews the research and development work on 1, 3, 5-Triamino-2, 4, 6-trinitrobenzene (TATB), and TATB-based formulations. Syntheses, analytical methods, thermophysical properties, performance, formulations, and toxicological and safety of TATB are included in this chapter.

References

  1. 1.
    Dobratz BM (1995) The insensitive high explosive triaminotrinitrobenzene (TATB). Development and Characterization-1888 to 1994 Report LA-13104-H, Los Alamos National Laboratory, Los Alamos NM, USAGoogle Scholar
  2. 2.
    Agrawal JP, Hodgson RD (2007) Organic chemistry of explosives. Wiley, Hoboken NJGoogle Scholar
  3. 3.
    Flurscheim B, Holmes EL (1929) CCCXCIX Pentanitroaniline. J Chem Soc (London) 304 L Hexaminobenzene 334Google Scholar
  4. 4.
    Mitchell AR, Pagoria PF, Schmidt RD (1997) US Patent No 5,569,783, 29 Oct 1996; 5,633,406, 27 May 1997; 6,069,277, 30 May 2000Google Scholar
  5. 5.
    Bellamy AJ, Ward SJ, Golding P (2002) Synthesis of ammonium diaminopicrate (ADAP), a new secondary explosive. Propellants Explos Pyrotech 27(2):59–61CrossRefGoogle Scholar
  6. 6.
    Druce RL, Souers PC, Chow C, Roeske F Jr, Vitello P, Hrousis C (2005) Detonation in TATB hemispheres. Propellants Explos Pyrotech 30(2):95–100. doi: 10.1002/prep.200400089 CrossRefGoogle Scholar
  7. 7.
    Urbansky T, Vasudeva SK (1978) Heat resistant explosives. J Scientific Ind Res 37:221–280Google Scholar
  8. 8.
    Atkins RL, Hollins RA, Wilson WS (1986) Synthesis of polynitro compounds hexa-substituted benzenes. J Org Chem 51:3261–3266CrossRefGoogle Scholar
  9. 9.
    Ott RG, Benzinger TM (1991) Preparation of 1,3,5-trizmino-2,4,6-trinitrobenzene. J Energetic Mater 5:343 US Patent No 4,997,987Google Scholar
  10. 10.
    Yang G, Nie F, Huang H, Zhao L, Pang W (2006) Preparation and characterization of nano-TATB explosive. Propellants Explos Pyrotech 31:390CrossRefGoogle Scholar
  11. 11.
    Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384:187CrossRefGoogle Scholar
  12. 12.
    Agrawal JP (1998) Recent trends in high-energy materials. Progr Energy Combustion Sci 24:1–30CrossRefGoogle Scholar
  13. 13.
    Huang Z, Chen B, Gao G (2005) IR vibrational assignments for TATB from the density functional B3LYP/6-31G(d) method. J Mol Struct 752:87CrossRefGoogle Scholar
  14. 14.
    Liu H, Zhao J, Ji G, Wei D, Gong Z (2006) Vibrational properties of molecule and crystal of TATB: A comparative density functional study. Phys Lett A 358:63CrossRefGoogle Scholar
  15. 15.
    Kolb JR, Rizzo HF (1979) Growth of 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) I anisotropic thermal txpansion. Propellants Explos Pyrotech 4:10CrossRefGoogle Scholar
  16. 16.
    Son SF, Asay BW, Henson BF, Sander RK, Ali AN, Zielinski PM, Phillips DS, Schwarz RB, Skidmore CB (1999) Dynamic observation of a thermally activated structure change in 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) by second harmonic generation. J Phys Chem B 103(26):5434–5440. doi: 10.1021/JP983307H CrossRefGoogle Scholar
  17. 17.
    Talawar MB, Agarwal AP, Anniyappan M, Gore GM, Asthana SN, Venugopalan S (2006) Method for preparation of fine TATB (2–5 μm) and its evaluation in plastic bonded explosive (PBX) formulations. J Hazard Mater 137(3):1848–1852. doi: 10.1016/j.jhazmat.2006.05.031 CrossRefGoogle Scholar
  18. 18.
    Makashir PS, Kurian EM (1996) Spectroscopic and thermal studies on the decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene. J Therm Anal 46:225CrossRefGoogle Scholar
  19. 19.
    Cady HH, Larson AC (1965) The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene. Acta Crystallogr 18(3):485–496. doi: 10.1107/S0365110X6500107X CrossRefGoogle Scholar
  20. 20.
    Byrd EFC, Rice BM (2009) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. [Erratum to document cited in CA144:256621]. J Phys Chem A 113(19):5813. doi: 10.1021/jp806520b CrossRefGoogle Scholar
  21. 21.
    Meyer R, Kohler J, Homburg A (2002) Explosives, 5th edn. Wiley-VCH, Weinheim Germany, p 344Google Scholar
  22. 22.
    Garza RG (1979) A thermogravimetric study of TATB and two TATB-based explosives. Report UCRL-82723 Lawrence Livermore National Laboratory, Livermore CA, USAGoogle Scholar
  23. 23.
    Rosen JM, Dickinson C (1969) Vapor pressures and heats of sublimation of some high-melting organic explosives. J Chem Eng Data 14(1):120–124. doi: 10.1021/je60040a044 CrossRefGoogle Scholar
  24. 24.
    Stephenson RM, Malanowski S (1987) Handbook of the thermodynamics of organic compounds. Elsevier, New YorkGoogle Scholar
  25. 25.
    Toghiani RK, Toghiani H, Maloney SW, Boddu VM (2008) Prediction of physicochemical properties of energetic materials. Fluid Ph Eq 64:86CrossRefGoogle Scholar
  26. 26.
    Solovyev VP, Selezenev AA, Aleinikov AY, Lashkov VN, Postnikov AY (2007) Calculation and experimental determination of the HE dependence specific heat versus temperature. In University of Pardubice, pp 299–306Google Scholar
  27. 27.
    Jones DA, Parker RP (1994) Simulation of cookoff results in a small scale test. Report DSTO-TR-0090 DSTO Aeronautical and Maritime Research Laboratory, Melbourne, AustraliaGoogle Scholar
  28. 28.
    Beard BC, Sharma J (1993) Surface chemical characterization methods applied to energetic materials. Mater Res Soc Symp Proc 296(Structure and Properties of Energetic Materials):257–268 (Boston MA 1992) DH Liebenberg, RW Armstrong, JJ Gilman (eds) Materials Research Society, Pittsburgh PAGoogle Scholar
  29. 29.
    F Nie, G Yang, G Zheng, Z Qiao, H Huang (2007) Proc NTREM Conference, Pardubice. p 452, April 25–27Google Scholar
  30. 30.
    Agrawal JP (2005) Some new high energy materials and their formulations for specialized spplications. Propellants Explos Pyrotech 30:316CrossRefGoogle Scholar
  31. 31.
    Osmont A, Catoire L, Gökalp I, Yang V (2007) Ab initio quantum chemical predictions of enthalpies of formation, heat capacities, and entropies of gas-phase energetic compounds. Combust Flame 151:262CrossRefGoogle Scholar
  32. 32.
    Selig W (1977) How to Estimate the Solubility of an Insoluble Compound: 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB). Report UCID-17412-Rev. 1, 1977. Estimation of the Solubility of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB) in Various Solvents, Report UCID-17412, 1977, Lawrence Livermore National Laboratory, Livermore CA, USAGoogle Scholar
  33. 33.
    Foltz MF, Ornellas DL, Pagoria PF, Mitchell AR (1996) Recrystallization and solubility of 1,3,5-triamino-2,4,6-trinitrobenzene in dimethyl sulfoxide. J Mater Sci 31(7):1893–1901. doi: 10.1007/BF00372205 CrossRefGoogle Scholar
  34. 34.
    Foltz MF, Maienschein JL, Green LG (1996) Particle size control of 1,3,5-triamino-2,4,6-trinitrobenzene by recrystallization from DMSO. J Mater Sci 31(7):1741–1750. doi: 10.1007/BF00372187 CrossRefGoogle Scholar
  35. 35.
    Keshavarz MH (2007) Quick estimation of heats of detonation of aromatic energetic compounds from structural parameters. J Hazard Mater 143:549CrossRefGoogle Scholar
  36. 36.
    Kennedy JE, Lee KY, Spontarelli T, Stine JR (1998) Los Alamos, Report LA-UR-98-2525Google Scholar
  37. 37.
    Tran TD, Pagoria PF, Hoffman DMN, Cunningham B, Simpson RL, Lee RS, Cutting JL (2002) http://www.intdetsymporg/detsymp2002/PaperSubmit/FinalManuscript/pdf/Tran-238pdf
  38. 38.
    Department of Army (1984 September) Military explosives, TM 9-1300-214, pp 8–72Google Scholar
  39. 39.
    Mader CL (2008) Numerical modeling of explosive and propellants. CRC Press, New York NYGoogle Scholar
  40. 40.
    Borg RAJ, Kemister G, Jones DA (1995 October) DSTO-TR-0226. Aeronautical and Maritime Research Laboratory, Melbourne, AustraliaGoogle Scholar
  41. 41.
    Becuwe A, Delclos A (1993) Low-sensitivity explosive compounds for low vulnerability warheads. Propellants Explos Pyrotech 18(1):1–10. doi: 10.1002/prep.19930180102 CrossRefGoogle Scholar
  42. 42.
    Chevalier JM, Carion N, Protat JC, Redasse JC (1993) Propagation phenomena on the detonation wave front. Phys Rev Lett 71(5):712–714. doi: 10.1103/PhysRevLett.71.712 CrossRefGoogle Scholar
  43. 43.
    Hallam JS (1976) TATB formulation study. Univ California, UCID-17087, p 28Google Scholar
  44. 44.
    Kolb JR, Pruneda CO (1979) Surface chemistry and energy of untreated and thermally treated TATB and plastic-bonded TATB composites. Lawrence Livermore National Laboratory, UCRL-82623 CONF-790632-9Google Scholar
  45. 45.
    Pruneda CO, Bower JK, Kolb JR (1980) Polymeric coatings effect on energy and sensitivity of high explosives. Org Coat Plast Chem 42:588–594Google Scholar
  46. 46.
    Rainwater KA, Lightfoot JM, Richardson RB (1988) Literature review of the lifetime of DOE materials: aging of plastic bonded explosives and the explosives and polymers contained therein. Report ANRCP-1998-12, Amarillo National Resource Center for Plutonium, San Antonio TX, USAGoogle Scholar

Additional Scholarly Articles for Further Reading

  1. 47.
    Adriaanse C (2010) Security: colorful response to TATP explosives. Chem Ind 21:9 (London, UK)Google Scholar
  2. 48.
    Al-Jalili TAR, Shah HN (1988) Protoheme, a dispensable growth factor for Bacteroides fragilis grown by batch and continuous culture in a basal medium. Curr Microbiol 17(1):13–18CrossRefGoogle Scholar
  3. 49.
    Almog J, Klein A, Tamiri T, Shloosh Y, Abramovich-Bar S (2005) A field diagnostic test for the improvised explosive urea nitrate. J Forensic Sci 50(3):582–586CrossRefGoogle Scholar
  4. 50.
    Amani M, Chu Y, Waterman KL, Hurley CM, Platek MJ, Gregory OJ (2012) Detection of triacetone triperoxide (TATP) using a thermodynamic based gas sensor. Sens Actuators B 162(1):7–13CrossRefGoogle Scholar
  5. 51.
    Andrews G, Lewis D, Notey J, Kelly R, Muddiman D (2010) Part I: characterization of the extracellular proteome of the extreme thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS2. Anal Bioanal Chem 398(1):377–389CrossRefGoogle Scholar
  6. 52.
    Armitt D, Zimmermann P, Ellis-Steinborner S (2008) Gas chromatography/mass spectrometry analysis of triacetone triperoxide (TATP) degradation products. Rapid Commun Mass Spectrom 22(7):950–958CrossRefGoogle Scholar
  7. 53.
    Ball R (2013) Thermal oscillations in the decomposition of organic peroxides: identification of a hazard, utilization, and suppression. Ind Eng Chem Res 52(2):922–933. doi: 10.1021/ie301070d CrossRefGoogle Scholar
  8. 54.
    Banerjee S, Mohapatra SK, Misra M, Mishra IB (2009) The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor. Nanotechnology 20(7):075502CrossRefGoogle Scholar
  9. 55.
    Bellamy AJ (1999) Triacetone triperoxide: its chemical destruction. J Forensic Sci 44(3):603–608CrossRefGoogle Scholar
  10. 56.
    Benson SJ, Lennard CJ, Maynard P, Hill DM, Andrew AS, Roux C (2009) Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)—preliminary study on TATP and PETN. Sci Justice 49(2):81–86CrossRefGoogle Scholar
  11. 57.
    Brady JE, Smith JL, Hart CE, Oxley J (2012) Estimating ambient vapor pressures of low volatility explosives by rising-temperature thermogravimetry. Propellants Explos Pyrotech 37(2):215–222. doi: 10.1002/prep.201100077 CrossRefGoogle Scholar
  12. 58.
    Brady JJ, Judge EJ, Levis RJ (2010) Identification of explosives and explosive formulations using laser electrospray mass spectrometry. Rapid Commun Mass Spectrom 24(11):1659–1664CrossRefGoogle Scholar
  13. 59.
    Brauer B, Dubnikova F, Zeiri Y, Kosloff R, Gerber RB (2008) Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands. Spectrochim Acta A Mol Biomol Spectrosc 71(4):1438–1445CrossRefGoogle Scholar
  14. 60.
    Brauer CS, Barber J, Weatherall JC, Smith BT, Tomlinson-Phillips J, Wooten A (2011) Characterization of peroxide-based explosives using Raman spectroscopy: isotopic analysis and DFT calculations of triacetone triperoxide (TATP). Proc SPIE 8019:80190H/1-80190H/6 (Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense X)Google Scholar
  15. 61.
    Brautigam CA, Deka RK, Schuck P, Tomchick DR, Norgard MV (2012) Structural and thermodynamic characterization of the interaction between two periplasmic Treponema pallidum lipoproteins that are components of a TPR-protein-associated TRAP transporter (TPAT). J Mol Biol 420(1–2):70–86CrossRefGoogle Scholar
  16. 62.
    Bry A, Frenois C, Nony S, Forzy A, Hairault L (2009) Sampling importance for the detection of explosives vapors by laboratory techniques. Actual Chim 334:28–35Google Scholar
  17. 63.
    Bulatov V, Reany O, Grinko R, Schechter I, Keinan E (2013) Time-resolved, laser initiated detonation of TATP supports the previously predicted non-redox mechanism. Phys Chem Chem Phys 15(16):6041–6048CrossRefGoogle Scholar
  18. 64.
    Bulatov V, Reany O, Grinko R, Schechter I, Keinan E (2013) Time-resolved, laser initiated detonation of TATP supports the previously predicted non-redox mechanism. Phys Chem Chem Phys 15(16):6041–6048CrossRefGoogle Scholar
  19. 65.
    Buttigieg GA, Knight AK, Denson S, Pommier C, Bonner Denton M (2003) Characterization of the explosive triacetone triperoxide and detection by ion mobility spectrometry. Forensic Sci Int 135(1):53–59CrossRefGoogle Scholar
  20. 66.
    Cagan A, Schmidt H, Rodriguez JE, Eiceman GA (2010) Fast gas chromatography-differential mobility spectrometry of explosives from TATP to Tetryl without gas atmosphere modifiers. Int J Ion Mobility Spectrom 13(3–4):157–165CrossRefGoogle Scholar
  21. 67.
    Capua E, Cao R, Sukenik CN, Naaman R (2009) Detection of triacetone triperoxide (TATP) with an array of sensors based on non-specific interactions. Sens Actuators B 140(1):122–127CrossRefGoogle Scholar
  22. 68.
    Cerna J, Bernes S, Canizo A, Eyler N (2009) 3,3,6,6,9,9-Hexaethyl-1,2,4,5,7,8-hexaoxacyclononane at 296 K. Acta Crystallogr Sect C: Cryst Struct Commun 65(11):o562–o564CrossRefGoogle Scholar
  23. 69.
    Chen J, Wu W, McNeil AJ (2012) Detecting a peroxide-based explosive via molecular gelation. Chem Commun (Camb) 48(58):7310–7312CrossRefGoogle Scholar
  24. 70.
    Chen N-C, Wu S-H, Wang C-H, Tsai C-L, Huang Y-T, Shih H-M (2014) Thermal hazard assessment of triacetone triperoxide (TATP) using differential scanning calo-rimetry (DSC). J Appl Fire Sci 23(4):423–434. doi: 10.2190/AF.23.4.d CrossRefGoogle Scholar
  25. 71.
    Chou H-H, Shih H-H, Cheng C-H (2010) Triptycene derivatives as high-Tg host materials for various electrophosphorescent devices. J Mater Chem 20(4):798–805. doi: 10.1039/B918188A CrossRefGoogle Scholar
  26. 72.
    Climent E et al (2013) Selective, sensitive, and rapid analysis with lateral-flow assays based on antibody-gated dye-delivery systems: the example of triacetone triperoxide. Chemistry 19(13):4117–4122CrossRefGoogle Scholar
  27. 73.
    Contini AE, Bellamy AJ, Ahad LN (2012) Taming the beast: measurement of the enthalpies of combustion and formation of triacetone triperoxide (TATP) and diacetone diperoxide (DADP) by oxygen bomb calorimetry. Propellants Explos Pyrotech 37(3):320–328. doi: 10.1002/prep.201100100 CrossRefGoogle Scholar
  28. 74.
    Cooper JK, Grant CD, Zhang JZ (2013) Experimental and TD-DFT study of optical absorption of six explosive molecules: RDX, HMX, PETN, TNT, TATP, and HMTD. J Phys Chem A 117(29):6043–6051CrossRefGoogle Scholar
  29. 75.
    Corfield R (2006) Was TATP lethal liquid? Chem Ind 16:4 (London, UK)Google Scholar
  30. 76.
    Costales-Nieves C, Boddu VM, Maloney SW, Chakka S, Damavarapu R, Viswanath DS (2010) SPARC prediction of physical properties of explosive compounds. In American institute of chemical engineers, pp a291/1–a291/17Google Scholar
  31. 77.
    Cotte-Rodriguez I, Chen H, Cooks RG (2006) Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization. Chem Commun (Camb) 9:953–955Google Scholar
  32. 78.
    Cotte-Rodriguez I, Hernandez-Soto H, Chen H, Cooks RG (2008) In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization. Anal Chem 80(5):1512–1519 (Washington, DC, US) doi: 10.1021/ac7020085
  33. 79.
    Crowson A, Cawthorne R (2012) Quality assurance testing of an explosives trace analysis laboratory–further improvements to include peroxide explosives. Sci Justice 52(4):217–225CrossRefGoogle Scholar
  34. 80.
    Damour PL, Freedman A, Wormhoudt J (2010) Knudsen effusion measurement of organic peroxide vapor pressures. Propellants Explos Pyrotech 35(6):514–520. doi: 10.1002/prep.200900083 CrossRefGoogle Scholar
  35. 81.
    DeCamp DL, Lim S, Colman RF (1988) Reaction of pyruvate kinase with the new nucleotide affinity labels 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5’-diphosphate and 5’-triphosphate. Biochemistry 27(20):7651–7658. doi: 10.1021/bi00420a012 CrossRefGoogle Scholar
  36. 82.
    DeGreeff L, Rogers DA, Katilie C, Johnson K, Rose-Pehrsson S (2015) Technical note: headspace analysis of explosive compounds using a novel sampling chamber. Forensic Sci Int 248:55–60CrossRefGoogle Scholar
  37. 83.
    Denekamp C, Gottlieb L, Tamiri T, Tsoglin A, Shilav R, Kapon M (2005) Two separable conformers of TATP and analogues exist at room temperature. Org Lett 7(12):2461–2464CrossRefGoogle Scholar
  38. 84.
    Dobrokhotov V et al (2012) Toward the nanospring-based artificial olfactory system for trace-detection of flammable and explosive vapors. Sens Actuators B 168:138–148CrossRefGoogle Scholar
  39. 85.
    Dubnikova F et al (2005) Decomposition of triacetone triperoxide is an entropic explosion. J Am Chem Soc 127(4):1146–1159. doi: 10.1021/ja0464903 CrossRefGoogle Scholar
  40. 86.
    Dubnikova F, Kosloff R, Oxley JC, Smith JL, Zeiri Y (2011) Role of metal ions in the destruction of TATP: theoretical considerations. J Phys Chem A 115(38):10565–10575CrossRefGoogle Scholar
  41. 87.
    Dubnikova F, Kosloff R, Zeiri Y, Karpas Z (2002) Novel approach to the detection of triacetone triperoxide (TATP): its structure and its complexes with ions. J Phys Chem A 106(19):4951–4956CrossRefGoogle Scholar
  42. 88.
    Dunayevskiy I, Tsekoun A, Prasanna M, Go R, Patel CKN (2007) High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone. Appl Opt 46(25):6397–6404CrossRefGoogle Scholar
  43. 89.
    Efremenko I, Zach R, Zeiri Y (2007) Adsorption of explosive molecules on human hair surfaces. J Phys Chem C 111(32):11903–11911CrossRefGoogle Scholar
  44. 90.
    Egorshev VY, Sinditskii VP, Smirnov SP (2013) A comparative study on two explosive acetone peroxides. Thermochim Acta 574:154–161CrossRefGoogle Scholar
  45. 91.
    Eren S, Uezer A, Can Z, Kapudan T, Ercag E, Apak R (2010) Determination of peroxide-based explosives with copper(II)-neocuproine assay combined with a molecular spectroscopic sensor. Analyst 135(8):2085–2091 (Cambridge, UK)Google Scholar
  46. 92.
    Espinosa-Fuentes EA, Pacheco-Londono LC, Barreto-Caban MA, Hernandez-Rivera SP (2012) Novel uncatalyzed synthesis and characterization of diacetone diperoxide. Propellants Explos Pyrotech 37(4):413–421. doi: 10.1002/prep.201000130 CrossRefGoogle Scholar
  47. 93.
    Evans HK, Tulleners FAJ, Sanchez BL, Rasmussen CA (1986) An unusual explosive, triacetonetriperoxide (TATP). J Forensic Sci 31(3):1119–1125CrossRefGoogle Scholar
  48. 94.
    Ewing RG, Waltman MJ, Atkinson DA (2011) Characterization of triacetone triperoxide by ion mobility spectrometry and mass spectrometry following atmospheric pressure chemical ionization. Anal Chem 83(12):4838–4844 (Washington DC, US)Google Scholar
  49. 95.
    Ezoe R, Imasaka T, Imasaka T (2015) Determination of triacetone triperoxide using ultraviolet femtosecond multiphoton ionization time-of-flight mass spectrometry. Anal Chim Acta 853:508–513CrossRefGoogle Scholar
  50. 96.
    Fan W, Young M, Canino J, Smith J, Oxley J, Almirall JR (2012) Fast detection of triacetone triperoxide (TATP) from headspace using planar solid-phase microextraction (PSPME) coupled to an IMS detector. Anal Bioanal Chem 403(2):401–408CrossRefGoogle Scholar
  51. 97.
    Fang X, Ahmad SR (2009) Detection of explosive vapour using surface-enhanced Raman spectroscopy. Appl Phys B: Lasers Opt 97(3):723–726CrossRefGoogle Scholar
  52. 98.
    Felix-Rivera H, Ramirez-Cedeno ML, Sanchez-Cuprill RA, Hernandez-Rivera SP (2011) Triacetone triperoxide thermogravimetric study of vapor pressure and enthalpy of sublimation in 303–338 K temperature range. Thermochim Acta 514(1–2):37–43CrossRefGoogle Scholar
  53. 99.
    Fialkov AB, Moragn M, Amirav A (2011) A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams. J Chromatogr A 1218(52):9375–9383CrossRefGoogle Scholar
  54. 100.
    Fidler Albo RL et al (2010) Degradation of triacetone triperoxide (TATP) using mechanically alloyed Mg/Pd. Propellants Explos Pyrotech 35(2):100–104CrossRefGoogle Scholar
  55. 101.
    Fitzgerald M, Bilusich D (2011) Sulfuric, hydrochloric, and nitric acid-catalyzed triacetone triperoxide (TATP) reaction mixtures: an aging study. J Forensic Sci 56(5):1143–1149CrossRefGoogle Scholar
  56. 102.
    Fitzgerald M, Bilusich D (2012) The identification of chlorinated acetones in analyses of aged triacetone triperoxide (TATP). J Forensic Sci 57(5):1299–1302CrossRefGoogle Scholar
  57. 103.
    Fujiyama-Novak JH, Gaddam CK, Das D, Vander Wal RL, Ward B (2013) Detection of explosives by plasma optical emission spectroscopy. Sens Actuators B 176:985–993CrossRefGoogle Scholar
  58. 104.
    Gaft M, Nagli L (2008) UV gated Raman spectroscopy for standoff detection of explosives. Opt Mater 30(11):1739–1746 (Amsterdam, The Netherlands)Google Scholar
  59. 105.
    Gerber M, Walsh G, Hopmeier M (2014) Sensitivity of TATP to a TASER electrical output. J Forensic Sci 59(6):1638–1641CrossRefGoogle Scholar
  60. 106.
    Germain ME, Knapp MJ (2008) Turn-on fluorescence detection of H2O2 and TATP. Inorg Chem 47(21):9748–9750Google Scholar
  61. 107.
    Girotti S et al (2011) A quantitative chemiluminescent assay for analysis of peroxide-based explosives. Anal Bioanal Chem 400(2):313–320CrossRefGoogle Scholar
  62. 108.
    Giubileo G, Colao F, Puiu A (2012) Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data. Laser Phys 22(6):1033–1037CrossRefGoogle Scholar
  63. 109.
    Giubileo G, Puiu A (2010) Photoacoustic spectroscopy of standard explosives in the MIR region. Nucl Instrum Methods Phys Res, Sect A 623(2):771–777CrossRefGoogle Scholar
  64. 110.
    Gu H, et al. (2010) Geometry-independent neutral desorption device for the sensitive EESI-MS detection of explosives on various surfaces. Analyst 135(4):779–788 (Cambridge, UK) doi: 10.1039/b921579d
  65. 111.
    Haroune N, Crowson A, Campbell B (2011) Characterisation of triacetone triperoxide (TATP) conformers using LC-NMR. Sci Justice 51(2):50–56CrossRefGoogle Scholar
  66. 112.
    Hilton CK, Krueger CA, Midey AJ, Osgood M, Wu J, Wu C (2010) Improved analysis of explosives samples with electrospray ionization-high resolution ion mobility spectrometry (ESI-HRIMS). Int J Mass Spectrom 298(1–3):64–71CrossRefGoogle Scholar
  67. 113.
    Hiyoshi RI, Nakamura J, Brill TB (2007) Thermal decomposition of organic peroxides TATP and HMTD by T-jump/FTIR spectroscopy. Propellants Explos Pyrotech 32(2):127–134CrossRefGoogle Scholar
  68. 114.
    Huestis DL, Mullen C, Coggiola MJ, Oser H (2008) Laser-ionization mass spectrometry of explosives and chemical warfare simulants. Sel Top Electron Syst 48:417–423 (Spectral sensing research for water monitoring applications and science and technology for chemical, biological and radiological defense)Google Scholar
  69. 115.
    Huestis DL, Mullen C, Coggiola MJ, Oser H (2008) Laser-ionization mass spectrometry of explosives and chemical warfare simulants. Int J High Speed Electron Syst 18(1):159–165CrossRefGoogle Scholar
  70. 116.
    Jensen L, Mortensen PM, Trane R, Harris P, Berg RW (2009) Reaction kinetics of acetone peroxide formation and structure investigations using Raman spectroscopy and X-ray diffraction. Appl Spectrosc 63(1):92–97CrossRefGoogle Scholar
  71. 117.
    Jian F, Qiao Y, Yu H, Zhuang R (2007) Hydrogen peroxide biosensor based on the electrochemistry of the myoglobin-TATP composite film. Anal Lett 40(14):2664–2672. doi: 10.1080/00032710701588572 CrossRefGoogle Scholar
  72. 118.
    Junqueira JRC, de AWR, Salles MO, Paixao TRLC (2013) Flow injection analysis of picric acid explosive using a copper electrode as electrochemical detector. Talanta 104:162–168Google Scholar
  73. 119.
    Katz G, Zybin S, Goddard WA III, Zeiri Y, Kosloff R (2014) Direct MD simulations of terahertz absorption and 2D spectroscopy applied to explosive crystals. J Phys Chem Lett 5(5):772–776. doi: 10.1021/jz402801m CrossRefGoogle Scholar
  74. 120.
    Kessel R (1991) An end to TATP in the UK. Hastings Cent Rep 21(6):3Google Scholar
  75. 121.
    Kozole J et al (2012) Characterizing the gas phase ion chemistry of an ion trap mobility spectrometry based explosive trace detector using a tandem mass spectrometer. Talanta 99:799–810CrossRefGoogle Scholar
  76. 122.
    Kozole J, Levine LA, Tomlinson-Phillips J, Stairs JR (2015) Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry. Talanta 140:10–19. doi: 10.1016/j.talanta.2015.03.001 CrossRefGoogle Scholar
  77. 123.
    Krishna BV, Misra VN, Mukherjee PS, Sharma P (2002) Microstructure and properties of flame sprayed tungsten carbide coatings. Int J Refract Met Hard Mater 20(5–6):355–374. doi: 10.1016/S0263-4368(02)00073-2 CrossRefGoogle Scholar
  78. 124.
    Kuzmin VV, Solov’ev MYe, Tuzkov YB, Kozak GD (2008) Forensic investigation of some peroxides explosives. Cent Eur J Energ Mater 5(3–4):77–85Google Scholar
  79. 125.
    Latendresse CA, Fernandes SC, You S, Zhang HQ, Euler WB (2013) A fluorometric sensing array for the detection of military explosives and IED materials. Anal Methods 5(20):5457–5463. doi: 10.1039/c3ay40293b CrossRefGoogle Scholar
  80. 126.
    Lazic V, Palucci A, Jovicevic S, Carpanese M (2011) Detection of explosives in traces by laser induced breakdown spectroscopy: differences from organic interferents and conditions for a correct classification. Spectrochim Acta Part B 66(8):644–655. doi: 10.1016/j.sab.2011.07.003 CrossRefGoogle Scholar
  81. 127.
    Lazic V, Palucci A, Jovicevic S, Poggi C, Buono E (2009) Analysis of explosive and other organic residues by laser induced breakdown spectroscopy. Spectrochim Acta Part B 64B(10):1028–1039. doi: 10.1016/j.sab.2009.07.035 CrossRefGoogle Scholar
  82. 128.
    Li X, Zhang Z, Tao L (2013) A novel array of chemiluminescence sensors for sensitive, rapid and high-throughput detection of explosive triacetone triperoxide at the scene. Biosens Bioelectron 47:356–360. doi: 10.1016/j.bios.2013.03.002 CrossRefGoogle Scholar
  83. 129.
    Li X, Zhang Z, Tao L (2013) A novel microarray chemiluminescence method based on chromium oxide nanoparticles catalysis for indirect determination of the explosive triacetone triperoxide at the scene. Analyst 138(5):1596–1600 (Cambridge, UK) doi: 10.1039/c3an00084b
  84. 130.
    Lin H, Suslick KS (2010) A colorimetric sensor array for detection of triacetone triperoxide vapor. J Am Chem Soc 132(44):15519–15521CrossRefGoogle Scholar
  85. 131.
    Lu D, Cagan A, Munoz RAA, Tangkuaram T, Wang J (2006) Highly sensitive electrochemical detection of trace liquid peroxide explosives at a Prussian-blue ‘artificial-peroxidase’ modified electrode. Analyst 131(12):1279–1281CrossRefGoogle Scholar
  86. 132.
    Lubczyk D, Grill M, Baumgarten M, Waldvogel SR, Muellen K (2012) Scaffold-optimized dendrimers for the detection of the triacetone triperoxide explosive using quartz crystal microbalances. ChemPlusChem 77(2):102–105CrossRefGoogle Scholar
  87. 133.
    Lubczyk D, Siering C, Loergen J, Shifrina ZB, Muellen K, Waldvogel SR (2010) Simple and sensitive online detection of triacetone triperoxide explosive. Sens Actuators B 143(2):561–566CrossRefGoogle Scholar
  88. 134.
    MacCrehan W, Moore S, Hancock D (2011) Development of SRM 2907 trace terrorist explosives simulants for the detection of semtex and triacetone triperoxide. Anal Chem 83(23):9054–9059 (Washington DC, US) doi: 10.1021/ac201967m
  89. 135.
    MacCrehan W, Moore S, Schantz M (2012) Reproducible vapor-time profiles using solid-phase microextraction with an externally sampled internal standard. J Chromatogr A 1244:28–36CrossRefGoogle Scholar
  90. 136.
    Malashikhin S, Finney NS (2008) Fluorescent signaling based on sulfoxide profluorophores: application to the visual detection of the explosive TATP. J Am Chem Soc 130(39):12846–12847CrossRefGoogle Scholar
  91. 137.
    Mamo SK, Gonzalez-Rodriguez J (2014) Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (TATP). Sensors 14(12):23269–23282. doi: 10.3390/s141223269 CrossRefGoogle Scholar
  92. 138.
    Marr AJ, Groves DM (2003) Ion mobility spectrometry of peroxide explosives TATP and HMTD. Int J Ion Mobility Spectrom 6(2):59–62Google Scholar
  93. 139.
    Matyas R (2013) Triacetonetriperoxide—a notorious explosive. Chem Listy 107(4):277–282Google Scholar
  94. 140.
    Matyas R, Chylkova J (2013) Study of TATP: method for determination of residual acids in TATP. Forensic Sci Int 228(1–3):170–173. doi: 10.1016/j.forsciint.2013.01.007 CrossRefGoogle Scholar
  95. 141.
    Matyas R, Jirasko R, Lycka A, Pachman J (2011) Study of TATP: formation of new chloroderivates of triacetone triperoxide. Propellants Explos Pyrotech 36(3):219–224. doi: 10.1002/prep.201000158 CrossRefGoogle Scholar
  96. 142.
    Matyas R, Pachman J (2007) Thermal stability of triacetone triperoxide. Sci Technol Energ Mater 68(4):111–116Google Scholar
  97. 143.
    Matyas R, Pachman J (2010) Study of TATP: influence of reaction conditions on product composition. Propellants Explos Pyrotech 35(1):31–37. doi: 10.1002/prep.200800044 CrossRefGoogle Scholar
  98. 144.
    Matyas R, Pachman J, Ang H-G (2008) Study of TATP: spontaneous transformation of TATP to DADP. Propellants Explos Pyrotech 33(2):89–91. doi: 10.1002/prep.200700247 CrossRefGoogle Scholar
  99. 145.
    Matyas R, Pachman J, Ang H-G (2009) Study of TATP: spontaneous transformation of TATP to DADP—Full Paper. Propellants Explos Pyrotech 34(6):484–488. doi: 10.1002/prep.200800043 Google Scholar
  100. 146.
    Matyas R, Selesovsky J (2009) Power of TATP based explosives. J Hazard Mater 165(1–3):95–99. doi: 10.1016/j.jhazmat.2008.09.063 CrossRefGoogle Scholar
  101. 147.
    Matyas R, Selesovsky J, Musil T (2012) Study of TATP: mass loss and friction sensitivity during ageing. Cent Eur J Energ Mater 9(3):251–260Google Scholar
  102. 148.
    Matyas R, Selesovsky J, Musil T (2013) Decreasing the friction sensitivity of TATP, DADP and HMTD. Cent Eur J Energ Mater 10(2):263–275Google Scholar
  103. 149.
    Matyas R, Zeman S, Trzcinski W, Cudzilo S (2008) Detonation performance of TATP/AN-based explosives. Propellants Explos Pyrotech 33(4):296–300. doi: 10.1002/prep.200700230 CrossRefGoogle Scholar
  104. 150.
    Mbah J, Knott D, Steward S (2014) Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization. Talanta 129:586–593. doi: 10.1016/j.talanta.2014.06.031 CrossRefGoogle Scholar
  105. 151.
    McGann WJ, Haigh P, Neves JL (2002) Expanding the capability of IMS explosive trace detection. Int J Ion Mobility Spectrom 5(3):119–122Google Scholar
  106. 152.
    Mills A, Grosshans P, Snadden E (2009) Hydrogen peroxide vapor indicator. Sens Actuators B 136(2):458–463. doi: 10.1016/j.snb.2008.12.032 CrossRefGoogle Scholar
  107. 153.
    Mowlawi AA, Yazdani M (2009) Monte carlo simulation of soil moisture effects on anti-tank landmines detection by neutron backscattering technique. Int J Mod Phys B 23(32):5907–5913. doi: 10.1142/S0217979209049735 CrossRefGoogle Scholar
  108. 154.
    Mullen C, Huestis D, Coggiola M, Oser H (2006) Laser photoionization of triacetone triperoxide (TATP) by femtosecond and nanosecond laser pulses. Int J Mass Spectrom 252(1):69–72. doi: 10.1016/j.ijms.2006.01.018 CrossRefGoogle Scholar
  109. 155.
    Muller D, Levy A, Shelef R, Abramovich-Bar S, Sonenfeld D, Tamiri T (2004) Improved method for the detection of TATP after explosion. J Forensic Sci 49(5):935–938CrossRefGoogle Scholar
  110. 156.
    Munoz RAA, Lu D, Cagan A, Wang J (2007) “One-step” simplified electrochemical sensing of TATP based on its acid treatment. Analyst 132(6):560–565CrossRefGoogle Scholar
  111. 157.
    Odbadrakh K, Lewis JP, Nicholson DM (2010) Interaction of the explosive molecules RDX and TATP with IRMOF-8. J Phys Chem C 114(17):7535–7540. doi: 10.1021/jp906192g CrossRefGoogle Scholar
  112. 158.
    Oestmark H, Wallin S, Ang HG (2012) Vapor pressure of explosives: a critical review. Propellants Explos Pyrotech 37(1):12–23. doi: 10.1002/prep.201100083 CrossRefGoogle Scholar
  113. 159.
    Oxley J et al (2008) Raman and infrared fingerprint spectroscopy of peroxide-based explosives. Appl Spectrosc 62(8):906–915. doi: 10.1366/000370208785284420 CrossRefGoogle Scholar
  114. 160.
    Oxley J, Smith J, Luo W (2006) Peroxide explosives: detection and destruction. Proc NATAS Annu Conf Therm Anal Appl 34th:027.05.901/1-027.05.901/7Google Scholar
  115. 161.
    Oxley J, Smith JL, Brady J, Naik S (2010) Determination of urea nitrate and guanidine nitrate vapor pressures by isothermal thermogravimetry. Propellants Explos Pyrotech 35(3):278–283. doi: 10.1002/prep.200800013 CrossRefGoogle Scholar
  116. 162.
    Oxley JC (2014) Explosive detection: how we got here and where are we going? Int J Energ Mater Chem Propul 13(4):373–381. doi: 10.1615/IntJEnergeticMaterialsChemProp.2014011493 Google Scholar
  117. 163.
    Oxley JC, Brady J, Wilson SA, Smith JL (2012) The risk of mixing dilute hydrogen peroxide and acetone solutions. J Chem Health Saf 19(2):27–33. doi: 10.1016/j.jchas.2011.07.010 CrossRefGoogle Scholar
  118. 164.
    Oxley JC et al (2012) Accumulation of explosives in hair—part 3: binding site study. J Forensic Sci 57(3):623–635. doi: 10.1111/j.1556-4029.2011.02020.x CrossRefGoogle Scholar
  119. 165.
    Oxley JC, Smith JL, Bowden PR, Rettinger RC (2013) Factors influencing triacetone triperoxide (TATP) and diacetone diperoxide (DADP) formation: part I. Propellants Explos Pyrotech 38(2):244–254. doi: 10.1002/prep.201200116 CrossRefGoogle Scholar
  120. 166.
    Oxley JC, Smith JL, Bowden PR (2012) Rettinger RC Factors influencing triacetone triperoxide (TATP) and diacetone diperoxide (DADP) formation. In North american thermal analysis society, pp 65–77Google Scholar
  121. 167.
    Oxley JC, Smith JL, Brady JE, Steinkamp L (2014) Factors influencing destruction of triacetone triperoxide (TATP). Propellants Explos Pyrotech 39(2):289–298. doi: 10.1002/prep.201300063 CrossRefGoogle Scholar
  122. 168.
    Oxley JC, Smith JL, Chen H (2002) Decomposition of a multi-peroxidic compound: triacetone triperoxide (TATP). Propellants Explos Pyrotech 27(4):209–216. doi: 10.1002/1521-4087(200209)27:4<209:AID-PREP209>3.0.CO;2-J CrossRefGoogle Scholar
  123. 169.
    Oxley JC, Smith JL, Huang J, Luo W (2009) Destruction of peroxide explosives. J Forensic Sci 54(5):1029–1033. doi: 10.1111/j.1556-4029.2009.01130.x CrossRefGoogle Scholar
  124. 170.
    Oxley JC, Smith JL, Kirschenbaum L, Marimganti S, Bernier E (2005) Transfer of explosives to hair. Proc NATAS Annu Conf Therm Anal Appl 33rd:094.36.892/1-094.36.892/9Google Scholar
  125. 171.
    Oxley JC, Smith JL, Kirschenbaum L, Shinde KP, Marimganti S (2004) New source of evidence: explosive traces in hair. Proc SPIE-Int Soc Opt Eng 5403:246–255 (Pt. 1, Sensors, and command, control communications, and intelligence (C31) technologies for homeland security and homeland defense III) doi: 10.1117/12.548165
  126. 172.
    Oxley JC, Smith JL, Kirschenbaum LJ, Marimganti S (2007) Accumulation of explosives in hair–part II: factors affecting sorption. J Forensic Sci 52(6):1291–1296CrossRefGoogle Scholar
  127. 173.
    Oxley JC, Smith JL, Kirschenbaum LJ, Marimganti S, Vadlamannati S (2008) Detection of explosives in hair using ion mobility spectrometry. J Forensic Sci 53(3):690–693. doi: 10.1111/j.1556-4029.2008.00719.x CrossRefGoogle Scholar
  128. 174.
    Oxley JC, Smith JL, Kirschenbaum LJ, Marimganti S, Vadlamannati S (2008) Detection of explosives in hair using ion mobility spectrometry. J Forensic Sci 53(3):690–693CrossRefGoogle Scholar
  129. 175.
    Oxley JC, Smith JL, Kirschenbaum LJ, Shinde KP, Marimganti S (2005) Accumulation of explosives in hair. J Forensic Sci 50(4):826–831. doi: 10.1520/JFS2004545 CrossRefGoogle Scholar
  130. 176.
    Oxley JC, Smith JL, Luo W, Brady J (2009) Determining the vapor pressures of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD). Propellants Explos Pyrotech 34(6):539–543. doi: 10.1002/prep.200800073 CrossRefGoogle Scholar
  131. 177.
    Oxley JC, Smith JL, Marimaganti K (2010) Developing small-scale tests to predict explosivity. J Therm Anal Calorim 102(2):597–603. doi: 10.1007/s10973-010-0983-6 CrossRefGoogle Scholar
  132. 178.
    Oxley JC, Smith JL, Resende E (2001) Determining explosivity part II: comparison of small-scale cartridge tests to actual pipe bombs. J Forensic Sci 46(5):1070–1075CrossRefGoogle Scholar
  133. 179.
    Oxley JC, Smith JL, Resende E, Pearce E, Chamberlain T (2003) Trends in explosive contamination. J Forensic Sci 48(2):334–342CrossRefGoogle Scholar
  134. 180.
    Oxley JC, Smith JL, Shinde K, Moran J (2005) Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique. Propellants Explos Pyrotech 30(2):127–130. doi: 10.1002/prep.200400094 CrossRefGoogle Scholar
  135. 181.
    Oxley JC, Smith JL, Steinkamp L, Zhang G (2013) Factors influencing triacetone triperoxide (TATP) and diacetone diperoxide (DADP) formation: part 2. Propellants Explos Pyrotech 38(6):841–851. doi: 10.1002/prep.201200215 CrossRefGoogle Scholar
  136. 182.
    Pacheco-Londono LC, Primera-Pedrozo OM, Hernandez-Rivera SP (2004) Experimental and theoretical model of reactivity and vibrational detection modes of triacetone triperoxide (TATP) and homologues. Proc SPIE-Int Soc Opt Eng 5617:190–201. doi: 10.1117/12.578603 Google Scholar
  137. 183.
    Pachman J, Matyas R (2011) Study of TATP: stability of TATP solutions. Forensic Sci Int 207(1–3):212–214. doi: 10.1016/j.forsciint.2010.10.010 CrossRefGoogle Scholar
  138. 184.
    Pal A, Clark CD, Sigman M, Killinger DK (2009) Differential absorption lidar CO2 laser system for remote sensing of TATP related gases. Appl Opt 48(4):B145–B150. doi: 10.1364/AO.48.00B145 CrossRefGoogle Scholar
  139. 185.
    Parajuli S, Miao W (2013) Sensitive Determination of Triacetone Triperoxide Explosives Using Electrogenerated Chemiluminescence. Anal Chem 85(16):8008–8015 (Washington DC, US) doi: 10.1021/ac401962b
  140. 186.
    Partridge A, Walker S, Armitt D (2010) Detection of impurities in organic peroxide explosives from precursor chemicals. Aust J Chem 63(1):30–37. doi: 10.1071/CH09481 CrossRefGoogle Scholar
  141. 187.
    Pena AJ, Pacheco-Londono L, Figueroa J, Rivera-Montalvo LA, Roman-Velazquez FR, Hernandez-Rivera SP (2005) Characterization and differentiation of high energy cyclic organic peroxides by GC/FT-IR, GC-MS, FT-IR, and Raman microscopy. Proc SPIE-Int Soc Opt Eng 5778:347–358 (Pt. 1, Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland defense IV) doi: 10.1117/12.604194
  142. 188.
    Pena-Quevedo AJ, Laramee JA, Durst HD, Hernandez-Rivera SP (2011) Cyclic organic peroxides characterization by mass spectrometry and Raman spectroscopy. IEEE Sens J 11(4):1053–1060. doi: 10.1109/JSEN.2010.2057730 CrossRefGoogle Scholar
  143. 189.
    Peterson GR, Bassett WP, Weeks BL, Hope-Weeks LJ (2013) Phase pure triacetone triperoxide: the influence of ionic strength, oxidant source, and acid catalyst. Cryst Growth Des 13(6):2307–2311. doi: 10.1021/cg301795j CrossRefGoogle Scholar
  144. 190.
    Petrova T, Michalkova A, Leszczynski J (2010) Adsorption of RDX and TATP on IRMOF-1: an ab initio study. Struct Chem 21(2):391–404. doi: 10.1007/s11224-009-9542-9 CrossRefGoogle Scholar
  145. 191.
    Pettersson A, Johansson I, Wallin S, Nordberg M, Oestmark H (2009) Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance. Propellants Explos Pyrotech 34(4):297–306. doi: 10.1002/prep.200800055 CrossRefGoogle Scholar
  146. 192.
    Price MA, Ghee AH (2009) Modeling for detonation and energy release from peroxides and non-ideal improvised explosives. Cent Eur J Energ Mater 6(3–4):239–254Google Scholar
  147. 193.
    Primera-Pedrozo OM, Pacheco-Londono LC, De la Torre-Quintana LF, Hernandez-Rivera SP, Chamberlain RT, Lareau RT (2004) Use of fiber optic coupled FT-IR in detection of explosives on surfaces. Proc SPIE-Int Soc Opt Eng 5403:237–245 (Pt. 1, Sensors, and command, control communications, and intelligence (C31) technologies for homeland security and homeland defense III) doi: 10.1117/12.542812
  148. 194.
    Ramirez ML, Felix-Rivera H, Sanchez-Cuprill RA, Hernandez-Rivera SP (2010) Thermal-spectroscopic characterization of acetone peroxide and acetone peroxide mixtures with nitrocompounds. J Therm Anal Calorim 102(2):549–555. doi: 10.1007/s10973-010-0952-0 CrossRefGoogle Scholar
  149. 195.
    Rasanen R-M et al (2008) Determination of gas phase triacetone triperoxide with aspiration ion mobility spectrometry and gas chromatography-mass spectrometry. Anal Chim Acta 623(1):59–65. doi: 10.1016/j.aca.2008.05.076 CrossRefGoogle Scholar
  150. 196.
    Ray RS, Sarma B, Mohanty S, Misra M (2014) Theoretical and experimental study of sensing triacetone triperoxide (TATP) explosive through nanostructured TiO2 substrate. Talanta 118:304–311. doi: 10.1016/j.talanta.2013.09.057 CrossRefGoogle Scholar
  151. 197.
    Reany O, Kapon M, Botoshansky M, Keinan E (2009) Rich polymorphism in triacetone-triperoxide. Cryst Growth Des 9(8):3661–3670. doi: 10.1021/cg900390y CrossRefGoogle Scholar
  152. 198.
    Romolo FS, Cassioli L, Grossi S, Cinelli G, Russo MV (2013) Surface-sampling and analysis of TATP by swabbing and gas chromatography/mass spectrometry. Forensic Sci Int 224(1–3):96–100. doi: 10.1016/j.forsciint.2012.11.005 CrossRefGoogle Scholar
  153. 199.
    Rowell F, Seviour J, Lim AY, Elumbaring-Salazar CG, Loke J, Ma J (2012) Detection of nitro-organic and peroxide explosives in latent fingermarks by DART- and SALDI-TOF-mass spectrometry. Forensic Sci Int 221(1–3):84–91CrossRefGoogle Scholar
  154. 200.
    Ryniec R, Piszczek M, Szustakowski M (2010) Multicriterial analysis of explosives in the THz range. Acta Phys Pol A 118(6):1235–1238CrossRefGoogle Scholar
  155. 201.
    Salinas Y et al (2014) Chromo-fluorogenic detection of nitroaromatic explosives by using silica mesoporous supports gated with tetrathiafulvalene derivatives. Chem—Eur J 20(3):855–866. doi: 10.1002/chem.201302461 CrossRefGoogle Scholar
  156. 202.
    Salinas Y et al (2014) Chromo-fluorogenic detection of nitroaromatic explosives by using silica mesoporous supports gated with tetrathiafulvalene derivatives. Chemistry 20(3):855–866CrossRefGoogle Scholar
  157. 203.
    Santos JP et al. (2014) Nanocrystalline tin oxide nanofibers deposited by a novel focused electrospinning method. Application to the detection of TATP precursors. Sensors 14(12):24231–24243 doi: 10.3390/s141224231
  158. 204.
    Schade W, Bohling C, Bauer C (2007) Laser optical sensors permit highly sensitive detection of explosives. Phys J 6(4):25–30Google Scholar
  159. 205.
    Schulte-Ladbeck R, Edelmann A, Quintas G, Lendl B, Karst U (2006) Determination of peroxide-based explosives using liquid chromatography with on-line infrared detection. Anal Chem 78(23):8150–8155. doi: 10.1021/ac0609834 CrossRefGoogle Scholar
  160. 206.
    Schulte-Ladbeck R, Karst U (2003) Determination of triacetonetriperoxide in ambient air. Anal Chim Acta 482(2):183–188. doi: 10.1016/S0003-2670(03)00212-5 CrossRefGoogle Scholar
  161. 207.
    Schulte-Ladbeck R, Kolla P, Karst U (2002) A field test for the detection of peroxide-based explosives. Analyst 127(9):1152–1154 (Cambridge, UK) doi: 10.1039/b206673b
  162. 208.
    Schulte-Ladbeck R, Kolla P, Karst U (2003) Trace analysis of peroxide-based explosives. Anal Chem 75(4):731–735. doi: 10.1021/ac020392n CrossRefGoogle Scholar
  163. 209.
    Schulte-Ladbeck R, Vogel M, Karst U (2006) Recent methods for the determination of peroxide-based explosives. Anal Bioanal Chem 386(3):559–565. doi: 10.1007/s00216-006-0579-y CrossRefGoogle Scholar
  164. 210.
    Scott AM et al (2012) Molecular simulations of adsorption of RDX and TATP on IRMOF-1(Be). J Mol Model 18(7):3363–3378. doi: 10.1007/s00894-011-1338-3 CrossRefGoogle Scholar
  165. 211.
    Scott AM, Petrova T, Hill F, Leszczynski J (2012) Density functional theory study of interactions of cyclotrimethylene trinitramine (RDX) and triacetone triperoxide (TATP) with metal-organic framework (IRMOF-1(Be)). Struct Chem 23(4):1143–1154CrossRefGoogle Scholar
  166. 212.
    Shaw A, Calhoun RL (2012) Electrogenerated chemiluminescence with ruthenium trisbipyridine and TATP. ECS Trans 41:49–56 (27, Physical and analytical electrochemistry (General session)–220th ECS meeting, 2011) doi: 10.1149/1.3692523
  167. 213.
    Shen C, Li J, Han H, Wang H, Jiang H, Chu Y (2009) Triacetone triperoxide detection using low reduced-field proton transfer reaction mass spectrometer. Int J Mass Spectrom 285(1–2):100–103. doi: 10.1016/j.ijms.2009.04.007 CrossRefGoogle Scholar
  168. 214.
    Sigman ME, Clark CD, Caiano T, Mullen R (2008) Analysis of triacetone triperoxide (TATP) and TATP synthetic intermediates by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 22(2):84–90. doi: 10.1002/rcm.3335 CrossRefGoogle Scholar
  169. 215.
    Sigman ME, Clark CD, Fidler R, Geiger CL, Clausen CA (2006) Analysis of triacetone triperoxide by gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry by electron and chemical ionization. Rapid Commun Mass Spectrom 20(19):2851–2857. doi: 10.1002/rcm.2678 CrossRefGoogle Scholar
  170. 216.
    Sinditskii VP, Kolesov VI, Egorshev VY, Patrikeev DI, Dorofeeva OV (2014) Thermochemistry of cyclic acetone peroxides. Thermochim Acta 585:10–15. doi: 10.1016/j.tca.2014.03.046 CrossRefGoogle Scholar
  171. 217.
    Song-im N, Benson S, Lennard C (2012) Establishing a universal swabbing and clean-up protocol for the combined recovery of organic and inorganic explosive residues. Forensic Sci Int 223(1–3):136–147. doi: 10.1016/j.forsciint.2012.08.017 CrossRefGoogle Scholar
  172. 218.
    Song-im N, Benson S, Lennard C (2013) Stability of explosive residues in methanol/water extracts, on alcohol wipes and on a glass surface. Forensic Sci Int 226(1–3):244–253CrossRefGoogle Scholar
  173. 219.
    Stambouli A, El BA, Bouayoun T, Bellimam MA (2004) Headspace-GC/MS detection of TATP traces in post-explosion debris. Forensic Sci Int 146(Suppl):S191–S194CrossRefGoogle Scholar
  174. 220.
    Staples EJ (2004) Detecting chemical vapours from explosives using the zNose, an ultra-high speed gas chromatograph. NATO Sci Ser, II 159:235–248 (Electronic noses & sensors for the detection of explosives)Google Scholar
  175. 221.
    Tarvin M, McCord B, Mount K, Sherlach K, Miller ML (2010) Optimization of two methods for the analysis of hydrogen peroxide: high performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode. J Chromatogr A 1217(48):7564–7572. doi: 10.1016/j.chroma.2010.10.022 CrossRefGoogle Scholar
  176. 222.
    Todd MW et al (2002) Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator. Appl Phys B: Lasers Opt 75(2–3):367–376. doi: 10.1007/s00340-002-0991-8 CrossRefGoogle Scholar
  177. 223.
    Tomlinson-Phillips J, Wooten A, Kozole J, Deline J, Beresford P, Stairs J (2014) Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer. Talanta 127:152–162. doi: 10.1016/j.talanta.2014.03.044 CrossRefGoogle Scholar
  178. 224.
    Tsaplev YB (2012) Decomposition of cyclic acetone peroxides in acid media. Kinet Catal 53(5):521–524. doi: 10.1134/S0023158412050163 CrossRefGoogle Scholar
  179. 225.
    van Duin A, Zybin S, Chenoweth K, Han S-P, Goddard WA, III (2005) Reactive force fields based on quantum mechanics for applications to materials at extreme conditions. Lect Ser Comput Comput Sci 4 B:1109–1113 (Advances in computational methods in sciences and engineering)Google Scholar
  180. 226.
    van Duin ACT, Zeiri Y, Dubnikova F, Kosloff R, Goddard WA III (2005) Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. J Am Chem Soc 127(31):11053–11062. doi: 10.1021/ja052067y CrossRefGoogle Scholar
  181. 227.
    Viswanath DS, Reinig M, Ghosh TK, Boddu VM (2010) Vapor pressure of nitro compounds. In vol Pt. 1. University of Pardubice, Institute of energetic materials, pp 306–309Google Scholar
  182. 228.
    Walter MA et al (2010) Triacetone triperoxide (TATP): hapten design and development of antibodies. Langmuir 26(19):15418–15423. doi: 10.1021/la1018339 CrossRefGoogle Scholar
  183. 229.
    Walter MA, Panne U, Weller MG (2011) A novel immunoreagent for the specific and sensitive detection of the explosive triacetone triperoxide (TATP). Biosensors 1:93–106. doi: 10.3390/bios1030093 CrossRefGoogle Scholar
  184. 230.
    Widmer L, Watson S, Schlatter K, Crowson A (2002) Development of an LC/MS method for the trace analysis of triacetone triperoxide (TATP). Analyst 127(12):1627–1632 (Cambridge, UK). doi: 10.1039/b208350g
  185. 231.
    Wilkinson J, Konek CT, Moran JS, Witko EM, Korter TM (2009) Terahertz absorption spectrum of triacetone triperoxide (TATP). Chem Phys Lett 478(4–6):172–174. doi: 10.1016/j.cplett.2009.07.079 CrossRefGoogle Scholar
  186. 232.
    Willer U, Schade W (2009) Photonic sensor devices for explosive detection. Anal Bioanal Chem 395(2):275–282. doi: 10.1007/s00216-009-2934-2 CrossRefGoogle Scholar
  187. 233.
    Wu S-H et al (2012) Thermal hazard analysis of triacetone triperoxide (TATP) by DSC and GC/MS. J Loss Prev Process Ind 25(6):1069–1074CrossRefGoogle Scholar
  188. 234.
    Wu S-H et al (2013) Effects of various fire-extinguishing reagents for thermal hazard of triacetone triperoxide (TATP) by DSC/TG. J Therm Anal Calorim 113(2):991–995. doi: 10.1007/s10973-012-2788-2 CrossRefGoogle Scholar
  189. 235.
    Xie Y, Cheng IF (2010) Selective and rapid detection of triacetone triperoxide by double-step chronoamperometry. Microchem J 94(2):166–170. doi: 10.1016/j.microc.2009.10.016 CrossRefGoogle Scholar
  190. 236.
    Xu M, Han J-M, Wang C, Yang X, Pei J, Zang L (2014) Fluorescence ratiometric sensor for trace vapor detection of hydrogen peroxide. ACS Appl Mater Interfaces 6(11):8708–8714. doi: 10.1021/am501502v CrossRefGoogle Scholar
  191. 237.
    Xu X, van dCAM, Kok EM, de BPCAM (2004) Trace analysis of peroxide explosives by high performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (HPLC-APCI-MS/MS) for forensic applications. J Forensic Sci 49(6):1230–1236Google Scholar
  192. 238.
    Yamaguchi S, Uchimura T, Imasaka T, Imasaka T (2009) Gas chromatography/time-of-flight mass spectrometry of triacetone triperoxide based on femtosecond laser ionization. Rapid Commun Mass Spectrom 23(19):3101–3106. doi: 10.1002/rcm.4225 CrossRefGoogle Scholar
  193. 239.
    Zeman S, Bartei C (2008) Some properties of explosive mixtures containing peroxides. J Hazard Mater 154(1–3):199–203. doi: 10.1016/j.jhazmat.2007.10.013 CrossRefGoogle Scholar
  194. 240.
    Zeman S, Bartei C (2008) Some properties of explosive mixtures containing peroxides part II. Relationships between detonation parameters and thermal reactivity of the mixtures with triacetone triperoxide. J Hazard Mater 154(1–3):199–203CrossRefGoogle Scholar
  195. 241.
    Zhang G (2010) A device for testing thermal impact sensitivity of high explosives. Propellants Explos Pyrotech 35(5):440–445. doi: 10.1002/prep.201000030 CrossRefGoogle Scholar
  196. 242.
    Zhang W-H, Zhang W-D, Chen L-Y (2010) Highly sensitive detection of explosive triacetone triperoxide by an In2O3 sensor. Nanotechnology 21(31):315502CrossRefGoogle Scholar
  197. 243.
    Zhukov IS, Kozak GD, Tsvigunov AN, Moroz NS (2010) Transformation of aluminum at explosion of its mixtures with TATP and HMTD. In vol Pt. 2. University of Pardubice, Institute of energetic materials, pp 822–824Google Scholar
  198. 244.
    Zuck A et al (2008) Explosive detection by microthermal analysis. J Energ Mater 26(3):163–180CrossRefGoogle Scholar

Copyright information

© US Government (outside the USA) 2018

Authors and Affiliations

  • Dabir S. Viswanath
    • 1
    • 2
    Email author
  • Tushar K. Ghosh
    • 3
  • Veera M. Boddu
    • 4
  1. 1.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  2. 2.Nuclear Engineering Teaching LaboratoryCockrell School of EngineeringAustinUSA
  3. 3.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  4. 4.Environmental Processes BranchUS Army Engineer Research and Development CenterChampaignUSA

Personalised recommendations