Advertisement

N-Methy-4-Nitroaniline (MNA)

  • Dabir S. ViswanathEmail author
  • Tushar K. Ghosh
  • Veera M. Boddu
Chapter
  • 822 Downloads

Abstract

N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. This chemical is commonly used as an intermediate in the synthesis of dyes, antioxidants, pharmaceuticals and gasoline, in gum inhibitors, poultry medicines, and as a corrosion inhibitor.

References

  1. 1.
    Provatas A, Davies PJ (1998) DNAN—A Replacement for TNT in Melt-Cast Formulations. Australian Melt-cast Research and Development, Explosives & Pyrotechnics Group, Weapons Systems Division, Defence Science and Technology Organisation, EDINBURGH SAGoogle Scholar
  2. 2.
    Ministry of Defence (1990) N-METHYL-4-NITROANILINE. UK 68–37 Issue 2, 23 March 1990Google Scholar
  3. 3.
    Padmanabhan S, Laxma RN, Durant GJ (1997) A convenient one pot procedure for N-methylation of aromatic amines using trimethyl orthoformate. Synth Commun 27(4):691–699CrossRefGoogle Scholar
  4. 4.
    Borisenkoa VE, Yu A, Zavjalovaa TG, Tretjakovaa ZS, Kozlovaa A, Koll J (2004) Thermodynamic properties of the hydrogen bonded complexes between N-substituted anilines and proton acceptors. Molecular Liquids 109:125–135CrossRefGoogle Scholar
  5. 5.
    Seifried R, Bekárek V (1998) Solvent effect of mixed solvents on the electronic spectra of N-methyl-2-nitroaniline and N-methyl-4-nitroaniline. Acta Universitatis Palackianae Olomucensis FACULTAS RERUM NATURALIUM 1998 CHEMICA 37Google Scholar
  6. 6.
    Toghiani RK, Toghiani H, Maloney SW, Boddu VM (2008) Prediction of physicochemical properties of energetic materials. Fluid Phase Equilib 264:86–92CrossRefGoogle Scholar
  7. 7.
    Boddu VM, Krishnaiah A, Maloney SW, Damavarapu R (2008) Physicochemical properties of an insensitive munitions compound, N-methyl-4-nitroaniline (MNA). J Hazardous Materials 155:288–294Google Scholar
  8. 8.
    Calculated using Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994–2008 ACD/Labs)Google Scholar

Additional Scholarly Articles for Further Reading

  1. 9.
    Abraham MH, Duce PP, Morris JJ, Taylor PJ (1987) Hydrogen bonding Part 2 Equilibrium constants and enthalpies of complexation for 72 monomeric hydrogen-bond acids with N-methylpyrrolidinone in 1,1,1-trichloroethane. J Chem Soc, Faraday Trans 1 83(9):2867–81 doi: 10.1039/f19878302867
  2. 10.
    Ahmed A, Sandler SI (2012) Solvation free energies and hydration structure of N-methyl-p-nitroaniline. J Chem Phys 136(15):154505CrossRefGoogle Scholar
  3. 11.
    Bailey RT, Cruickshank FR, Pavlides P, Pugh D, Sherwood JN (1991) Organic materials for nonlinear optics: interrelationships between molecular properties, crystal structure, and optical properties. J Phys D Appl Phys 24(2):135–145. doi: 10.1088/0022-3727/24/2/009 CrossRefGoogle Scholar
  4. 12.
    Basque P, Ritcey AM (1994) Langmuir-Blodgett films from a cellulose derivative containing N-methyl-4-nitroaniline. Polym Mater Sci Eng 71:488–489Google Scholar
  5. 13.
    Benchabane M (1993) Gas evolution analysis III Chemical compatibility study of GAP based propellant by the DVST. J Energ Mater 11(2):119–34. doi: 10.1080/07370659308018643
  6. 14.
    Boddu VM, Maloney SW (2012) Physical properties of insensitive munitions compounds for developing wastewater treatment technologies. In: Air & Waste Management Association, vol 3. p 1958–1965Google Scholar
  7. 15.
    Buncel E, Rajagopal S (1989) Solvatochromic studies of novel azo merocyanine dyes. The π*azo scale of solvent polarity. J Org Chem 54(4):798–809. doi: 10.1021/jo00265a017 CrossRefGoogle Scholar
  8. 16.
    Damman P, Vallee R, Dosiere M, Toussaere E, Zyss J (2001) Oriented crystallization of NLO organic materials. Synth Met 124(1):227–232. doi: 10.1016/S0379-6779(01)00459-3 CrossRefGoogle Scholar
  9. 17.
    Dezern JF (1988) Synthesis and characterization of BTDA-based poly(amide imides). J Polym Sci Part A: Polym Chem 26(8):2157–2169. doi: 10.1002/pola.1988.080260813 CrossRefGoogle Scholar
  10. 18.
    Drago RS (1992) Extension of the unified scale of solvent polarities to acceptor probes: concerns about β-π* parameters. J Org Chem 57(24):6547–6552. doi: 10.1021/jo00050a033 CrossRefGoogle Scholar
  11. 19.
    Eilmes A (2014) Solvatochromic probe in molecular solvents: implicit versus explicit solvent model. Theor Chem Acc 133(9):1–13. doi: 10.1007/s00214-014-1538-x CrossRefGoogle Scholar
  12. 20.
    Elliot MS, Smith FJ, Fraser AM (2000) Synthetic procedures yielding targeted nitro and nitroso derivatives of the propellant stabilisers diphenylamine, N-methyl-4-nitroaniline, and N, N’-diethyl-N, N’-diphenylurea. Propellants Explos Pyrotech 25(1):31–36. doi: 10.1002/(SICI)1521-4087(200001)25:1<31:AID-PREP31>3.0.CO;2-Z CrossRefGoogle Scholar
  13. 21.
    Ferguson G, Glidewell C, Low JN, Skakle JMS, Wardell JL (2001) Hydrogen bonding in C-methylated nitroanilines: the three-dimensional framework structure of 2-methyl-4-nitroaniline. Acta Crystallogr, Sect C: Cryst Struct Commun C 57(3):315–316. doi: 10.1107/S0108270100019405 CrossRefGoogle Scholar
  14. 22.
    Fife TH, Bembi R (1993) Metal ion promoted hydroxide ion and water catalyzed hydrolysis of amides. Effects of the acyl group and the leaving group. J Am Chem Soc 115(24):11358–11363. doi: 10.1021/ja00077a039 CrossRefGoogle Scholar
  15. 23.
    Gajda K, Daszkiewicz Z, Kozubek E, Ejsmont K, Zarychta B (2014) Theoretical multipolar atom model transfer in nitro-derivatives of n-methylaniline. Cryst Growth Des 14(11):5737–5748. doi: 10.1021/cg500984p CrossRefGoogle Scholar
  16. 24.
    Garofalo A et al (2010) Design, synthesis, and dna-binding of n-alkyl(anilino)quinazoline derivatives. J Med Chem 53(22):8089–8103. doi: 10.1021/jm1009605 CrossRefGoogle Scholar
  17. 25.
    Hayashi S (1999) Differential broadening caused by dipolar interaction with 1H in 13C MAS NMR signals split by residual dipolar interaction with 14N. Magn Reson Chem 37(11):843–851CrossRefGoogle Scholar
  18. 26.
    Hayata K, Yanagawa K, Koshiba M (1990) Field analysis of the Cherenkov doubling of infrared coherent radiation utilizing an organic crystal core bounded by a glass capillary. J Appl Phys 68(12):6033–6043. doi: 10.1063/1.346915 CrossRefGoogle Scholar
  19. 27.
    Kanoun MB, Botek E, Champagne B (2010) Electrostatic modeling of the linear optical susceptibilities of 2-methyl-4-nitroaniline, m-nitroaniline, 3-methyl-4-nitropyridine N-oxide and 2-carboxylic acid-4-nitropyridine-1-oxide crystals. Chem Phys Lett 487(4–6):256–262. doi: 10.1016/j.cplett.2010.01.021 CrossRefGoogle Scholar
  20. 28.
    Kanoun MB, Champagne B (2011) Calculating the second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine N-oxide, 2-carboxylic acid-4-nitropyridine-1-oxide, 2-methyl-4-nitroaniline, and m-nitroaniline crystals. Int J Quantum Chem 111(4):880–890. doi: 10.1002/qua.22852 CrossRefGoogle Scholar
  21. 29.
    Keswani CL, Weber DJ (1967) Thin-layer chromatography of substituted nitroanilines and related compounds. J Chromatogr 30(1):130–135. doi: 10.1016/S0021-9673(00)84121-7 CrossRefGoogle Scholar
  22. 30.
    Khan F, Pal D, Ghosh A, Cameotra SS (2013) Degradation of 2,4-dinitroanisole (DNAN) by metabolic cooperative activity of Pseudomonas sp. strain FK357and Rhodococcus imtechensis strain RKJ300. Chemosphere 93(11):2883–2888. doi: 10.1016/j.chemosphere.2013.09.005
  23. 31.
    Ko C-J et al (2013) Nitroanilines enhancing the holographic data storage characteristics of the 9,10-phenanthrenequinone-doped poly(methyl methacrylate) photopolymer. J Appl Polym Sci 127(1):643–650. doi: 10.1002/app.37835 CrossRefGoogle Scholar
  24. 32.
    Kobeissi M, Yazbeck O, Chreim Y (2014) A convenient one-pot synthesis of polysubstituted pyrroles from N-protected succinimides. Tetrahedron Lett 55(15):2523–2526. doi: 10.1016/j.tetlet.2014.03.021 CrossRefGoogle Scholar
  25. 33.
    Kodiyath R et al (2013) Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. J Mater Chem A 1(8):2777–2788. doi: 10.1039/c2ta00867j CrossRefGoogle Scholar
  26. 34.
    Kumar VMMJ, Shameer H, Jayadevaiah KV, Jayachandran E, Sreenivasa GM (2009) Synthesis, characterization and biological evaluation of thiazolidinone derivatives as potential antimicrobial agents. J Chem Pharm Sci 2(2):128–131Google Scholar
  27. 35.
    Lebegue N, Gallet S, Flouquet N, Carato P, Giraudet S, Berthelot P (2004) Synthesis of 4-methoxybenzylamino derivatives of dibenzothiadiazepine dioxide. Heterocycles 63(11):2457–2463. doi: 10.3987/COM-04-10095 CrossRefGoogle Scholar
  28. 36.
    Longo M, Cavallaro A (1996) Determination of aromatic amines at trace levels by derivatization with heptafluorobutyric anhydride and gas chromatography - electron-capture negative-ion chemical ionization mass spectrometry. J Chromatogr A 753(1):91–100CrossRefGoogle Scholar
  29. 37.
    Nesterov VN, Timofeeva TV, Borbulevych OY, Antipin MY, Clark RD (2000) A combinatorial chemistry approach to new materials for non-linear optics. I. Five schiff bases. Acta Crystallogr, Sect C: Cryst Struct Commun C56(8):971–975. doi: 10.1107/S0108270100002845
  30. 38.
    Nunes N, Elvas-Leitao R, Martins F (2014) UV-Vis spectroscopic study of preferential solvation and intermolecular interactions in methanol/1-propanol/acetonitrile by means of solvatochromic probes. Spectrochim Acta, Part A 124:470–479. doi: 10.1016/j.saa.2014.01.021 CrossRefGoogle Scholar
  31. 39.
    Ojo IAO, Ajayi I, Akingbohungbe AE, Adereti A (2006) The synthesis and assessment of some benzyl anilinomethyl sulfides as insecticides. Int J Chem (Calcutta, India) 16(1):21–28Google Scholar
  32. 40.
    Patel KD, Patel CN, Patel GM (2014) Synthesis and antidiabetic activity of novel 4-substituted-N-[phenyl(2,4,5-triphenyl-1H-imidazol-1-yl)methyl]benzenamine. Inventi Impact: Med Chem(4):142–145, 4 ppGoogle Scholar
  33. 41.
    Pavlat P, Hlavac J, Bekarek V (1998) Solvent effect on electronic and vibrational spectra of N-methyl-2-nitroaniline and N-methyl-4-nitroaniline. Chem Pap 52(4):226–229Google Scholar
  34. 42.
    Pavlat P, Hlavac J, Bekarek V (1997) Solvent effect on electronic and vibrational spectra of N-methyl-2-nitroaniline and N-methyl-4-nitroaniline. In: Vydavatelstvo STU, p 111–112Google Scholar
  35. 43.
    Platten WE 3rd, Bailey D, Suidan MT, Maloney SW (2010) Biological transformation pathways of 2,4-dinitro anisole and N-methyl paranitro aniline in anaerobic fluidized-bed bioreactors. Chemosphere 81(9):1131–1136CrossRefGoogle Scholar
  36. 44.
    Sena VLM, Srivastava RM, de Simone CA, da Cruz Goncalves SM, Silva RO, Pereira MA (2007) Conventional and microwave-assisted reaction of N-(hydroxymethyl)phthalimide with arylamines: synthesis of N-[(arylamino)methyl] phthalimide derivatives. J Braz Chem Soc 18(6):1224–1234CrossRefGoogle Scholar
  37. 45.
    Smiataczowa K, Maj K, Widernik T, Nesterowicz M (1998) Basicity of N-arylglucopyranosylamines in methanol. Pol J Chem 72(3):587–594Google Scholar
  38. 46.
    Sophy KB, Shedge SV, Pal S (2008) Noniterative Density Functional Response Approach: Application to Nonlinear Optical Properties of p-Nitroaniline and Its Methyl-Substituted Derivatives. J Phys Chem A 112(44):11266–11272CrossRefGoogle Scholar
  39. 47.
    Steinmetz FP et al (2014) Methods for assigning confidence to toxicity data with multiple values—Identifying experimental outliers. Sci Total Environ 482–483:358–365CrossRefGoogle Scholar
  40. 48.
    Stephens J, Gebre T, Batra AK, Aggarwal MD, Lal RB (2003) Microhardness studies on organic crystals. J Mater Sci Lett 22(3):179–180CrossRefGoogle Scholar
  41. 49.
    Tayebee R, Rezaei Seresht E, Jafari F, Rabiei S (2013) Simple Methodology for the Aerobic N-Methylation of Substituted Anilines Catalyzed by Zirconium Oxychloride Octahydrate, ZrOCl2·8H2O. Ind Eng Chem Res 52(32):11001–11006CrossRefGoogle Scholar
  42. 50.
    Turker L (2013) Detonation velocity—a molecular aspect. Adv Chem Model 4:223–236Google Scholar
  43. 51.
    Vijay Kumar MMJ et al (2009) N-substituted-thiazolidinones: synthesis and characterization of new novel anti-inflammatory agents. Int J Pharm Sci 1(1):42–54Google Scholar
  44. 52.
    Vijay Kumar MMJ, Jayadevaiah KV, Nagaraja TS, Shameer H, Jayachandran E, Sreenivasa GM (2009) Synthesis, characterization and anthelmintic activity of novel N-substituted thiazolidinones. J Chem Pharm Sci 2(4):277–280Google Scholar
  45. 53.
    Watanabe T, Yamamoto H, Hosomi T, Miyata S (1991) New molecular design for noncentrosymmetric crystal structures: lambda shape molecules for frequency doubling. NATO ASI Ser, Ser E 194(Org. Mol. Nonlinear Opt. Photonics):151–9Google Scholar
  46. 54.
    Yonehara H, Kang W-B, Kawara T, Pac C (1994) Synthesis and second-harmonic generation properties of 2-(4-nitroanilino)-1,3,5-triazine derivatives. J Mater Chem 4(10):1571–1577CrossRefGoogle Scholar
  47. 55.
    Zheng X et al (2007) Analgesic agents without gastric damage: Design and synthesis of structurally simple benzenesulfonanilide-type cyclooxygenase-1-selective inhibitors. Bioorg Med Chem 15(2):1014–1021CrossRefGoogle Scholar
  48. 56.
    Zhou J, Chen S (1998) Manufacture of N-methyl-4-nitroaniline as explosive stability detecting standard. Huozhayao Xuebao 21(3):30–35Google Scholar

Copyright information

© US Government (outside the USA) 2018

Authors and Affiliations

  • Dabir S. Viswanath
    • 1
    • 2
    Email author
  • Tushar K. Ghosh
    • 3
  • Veera M. Boddu
    • 4
  1. 1.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  2. 2.Nuclear Engineering Teaching LaboratoryCockrell School of EngineeringAustinUSA
  3. 3.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  4. 4.Environmental Processes BranchUS Army Engineer Research and Development CenterChampaignUSA

Personalised recommendations