Advertisement

5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO)

  • Dabir S. ViswanathEmail author
  • Tushar K. Ghosh
  • Veera M. Boddu
Chapter

Abstract

NTO is a very attractive explosive due to its insensitivity, thermal and mechanical stability. NTO can be used to prepare melt-cast explosives (NTO-TNT mixture) as well as pressed explosives with thermoplastic binder and cast PBX charges for Insensitive Munitions. In this chapter, various synthesis processes and physico-chemical properties of NTO are discussed. A number of formulations along with there explosive properties are presented and compared with neat NTO and TNT. The toxicity, biodegradation, and detection techniques are also discussed in this chapter.

References

  1. 1.
    von M Manchot, Noll R (1905) Ueber Derivate des Triazols (On the derivatives of triazols). Justus Liebigs Annalen de Chemie 343:1–27Google Scholar
  2. 2.
    Chipen GI, Bokalder RP, Grinshtein VY (1966) 1, 2, 4-triazol-3-one and its nitro and amino derivatives. Chem Heterocycl Compds 2(1):110–116Google Scholar
  3. 3.
    Smith MW, Cliff MD (1999) NTO-based formulations: a technology review. DSTO-TR-0796Google Scholar
  4. 4.
    Zbarsky VL, Yudin NV (2005) Kinetics of the synthesis of NTO in nitric acid. Propellants Explos Pyrotech 30(4):298–302CrossRefGoogle Scholar
  5. 5.
    Mukundan T, Purandare GN, Nair JK, Pansare SM, Sinha RK, Singh H (2002) Explosive nitrotriazolone formulates. Defence Sci J 52(2):127–133CrossRefGoogle Scholar
  6. 6.
    Singh G, Kapoor IPS, Tiwari SK, Felix PS (2001) Studies on energetic compounds part 16 chemistry and decomposition mechanisms of 5-nitro-2,4dihydro-3H-1,2,4-triazole-3-one (NTO). J Hazard Mater B 81:67–82CrossRefGoogle Scholar
  7. 7.
    Spears RJ, Louve CN, Wolfson MG (1989) A preliminary assessment of NTO as an insensitive high explosive. MRL-TR-89-19 DSTOGoogle Scholar
  8. 8.
    Li J (1998) One-pot synthesis of 3-nitro-1,2,4-triazol-5-one. Beijing Ligong Dexue Xuebao 18(4):518–519Google Scholar
  9. 9.
    Kim HS, Goh EM, Park BS (2003) Preparation method of 3-nitro-1,2,4-triazol-5-one by a process minimizing heat generation during crystallization. US Patent 6583293Google Scholar
  10. 10.
    Chipen GI, Bokalder RP, Grinshtein VYa (1966) 1,2,4-triazol-3-one and its nitro and amino derivatives. Chem Heterocycl Compd 2(1):79–83CrossRefGoogle Scholar
  11. 11.
    Lee K-Y, Coburn MD (1985) 3-nitro-1,2,4-triazol-5-one, a less sensitive explosive. Los Alamos National Laboratory Report No LA-10302-MSGoogle Scholar
  12. 12.
    Kroger CF, Miethchen R, Frank H, Soemer M, Pilz S (1969) 1, 2, 4-triazoles. 17. nitration and bromination of 1, 2, 4-triazolones. chemische berichte 102(3):755Google Scholar
  13. 13.
    Katritzky R, Ogretir C (1982) The kinetic nitration and basicity of 1,2,4-triazol-5-ones. Chim Acta Tureica 10:137–146Google Scholar
  14. 14.
    Yang G, Nie F, Li J, Guo Q, Qiao Z (2007) Preparation and characterization of nano-NTO explosive. J Energ Mater 25:35–47CrossRefGoogle Scholar
  15. 15.
    Wang D, Zhang J, Wang J, Wang B (2007) Preparation of nanometer NTO by W/O microemulsion. Huogongpin 14(1):9–11Google Scholar
  16. 16.
    Ma H, Song J, Hu R (2006) A review on 3-nitro-1, 2, 4-triazol-5-one and its salts. Huozhayao Xuebao 29(6):9–15Google Scholar
  17. 17.
    Lee KY, Gilardi R (1993) Structure and properties of energetic materials. Material Research Society, Pittsberg, PA, p 237; Lee KY, Gilardi R (1993) Mater Res Soc Symp Proc 296:237Google Scholar
  18. 18.
    Bolotina N, Kirschbaum K, Pinkerton AA, Alan A (2005) Energetic materials: a-NTO crystallizes as a four component triclinic twin. Acta Crystallogr Struct Sci B 61(5):577–584CrossRefGoogle Scholar
  19. 19.
    Bolotina NB, Zhurova EA, Pinkerton AA (2003) crystal structure. J Appl Cryst 36:280–285CrossRefGoogle Scholar
  20. 20.
    Yi J-H, Zhao F-Q, Gao H-X, Xu S-Y, Wang M-C, Hu R-Z (2008) Preparation, characterization, non-isothermal reaction kinetics, thermodynamic properties, and safety performances of high nitrogen compound: Hydrazine 3-nitro-1,2,4-triazol-5-one complex. J Hazard Mater 153:261–268CrossRefGoogle Scholar
  21. 21.
    Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151:289–305CrossRefGoogle Scholar
  22. 22.
    Calculated using Advanced Chemistry Development (ACD/Labs) Software V814 for Solaris 1994–2008 (ACD/Labs)Google Scholar
  23. 23.
    Toghiani RK, Toghiani H, Maloney SW, Boddu VM (2008) Prediction of physicochemical properties of energetic materials. Fluid Phase Equilib 264(1–2):86–92CrossRefGoogle Scholar
  24. 24.
    Sinditskii VP, Smirnov SP, Yu EV (2007) Thermal decomposition of NTO: an explanation of the high activation energy. Propellants, Explos, Pyrotech 32(4):277–287CrossRefGoogle Scholar
  25. 25.
    Volk F, Bathelt H (2002) Performance parameters of explosives: equilibrium and non-equilibrium reactions. Propellants, Explos, Pyrotech 27:136–141CrossRefGoogle Scholar
  26. 26.
    Osmont A, Catoire L, Gökalp I, Yang V (2007) Ab initio quantum chemical predictions of enthalpies of formation, heat capacities, and entropies of gas-phase energetic compounds. Combust Flame 151:262–273CrossRefGoogle Scholar
  27. 27.
    Li ZN, Ma HX, Song JR, Zhao FQ, Xu KZ, Hu RZ (2008) Specific heat capacity, thermodynamic properties and adiabatic time-to-explosion of NTO. Chin J Explos Propellants No 3Google Scholar
  28. 28.
    Kim KJ, Kim MJ, Lee JM, Kim SH, Kim HS, Park BS (1998) Solubility, density, and metastable zone width of the 3-nitro-1,2,4-triazol-5-one + water system. J Chem Eng Data 43:65–68CrossRefGoogle Scholar
  29. 29.
    Liu MH, Chen C, Hong YS, Liu CW (2005) Polyparametric modification equation for estimating thermodynamic properties of energetic nitro compounds. Theor Chem Acc 113(1):35–41CrossRefGoogle Scholar
  30. 30.
    Xiao HM, Ju XH, Xu LN, Fang GY (2004) A density-functional theory investigation of 3-nitro-1,2,4-triazole-5-one dimers and crystal. J Chem Phys 121:12523–12531CrossRefGoogle Scholar
  31. 31.
    Fang GY, Xu LN, Hu XG, Li XH, Xiao HM, Ju XH, Gong XD (2005) Density functional theory study of the interaction between 3-nitro-1, 2, 4-triazol-5-one and water. J Theor Comput Chem 4(3):849–856CrossRefGoogle Scholar
  32. 32.
    Fang GY, Xu LN, Hu XG, Li XH (2005) Density functional theory study of the interaction between 3-nitro-1, 2, 4-triazol-5-one and ammonia. Int J Quantum Chem 105(2):148–153CrossRefGoogle Scholar
  33. 33.
    Rothgery EF, Audette DE, Wedlich RC, Csejka DA (1991) The study of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one (NTO) by DSC, TGA-MS, and ARC. Thermochim Acta 185(2):235–243CrossRefGoogle Scholar
  34. 34.
    Brill TB, Brush PJ, Patil DG (1993) Thermal decomposition of energetic materials 58. Chemistry of ammonium nitrate and ammonium dinitramide near the burning surface temperature. Combust Flame 92(1–2):178–186CrossRefGoogle Scholar
  35. 35.
    Oxley JC, Smith JL, Zhou Z, McKenney RL (1995) Thermal decomposition studies on NTO and NTO/TNT. J Phys Chem 99:10383–10391CrossRefGoogle Scholar
  36. 36.
    Garland NL, Ladouceur HD, Nelson HH (1997) Laser-induced decomposition of NTO. J Phys Chem A 101:8508–8512CrossRefGoogle Scholar
  37. 37.
    Prabhakaran KV, Naidu SR, Kurian EM (1994) XRD, spectroscopic and thermal analysis studies on 3-nitro-l,2,4-triazol-5-one. Thermochim Acta 241:199–212CrossRefGoogle Scholar
  38. 38.
    Ostmark H, Bergman H, Aquist G, Langlet A, Persson B Decomposition of NTO: some initial observations. In: Proceedings of the 16th international pyrotechnics seminar, Jönköping, Sweden, p 874Google Scholar
  39. 39.
    Williams GK, Palopoli SF, Brill TB (1994) Thermal decomposition of energetic materials 65. Conversion of insensitive explosives (NTO, ANTA) and related compounds to polymeric melon-like cyclic azine burn-rate suppressants. Combust Flame 98:197CrossRefGoogle Scholar
  40. 40.
    Meredith C, Russell TP, Mowrey RC, McDonald JR (1998) Decomposition of 5-nitro-2,3-dihydro-3H-1,2,4-triazol-3-one (NTO): energetics associated with several proposed initiation routes. J Phys Chem A 102:471–477CrossRefGoogle Scholar
  41. 41.
    Ostmark H (Nov 1991) Thermal decomposition of NTO FOA. Report D-2017823 National Defense Research Establishment: Sundbyberg, SwedenGoogle Scholar
  42. 42.
    Ostmark H, Bergman H, Åqvist G (1993) The chemistry of 3-mtro-1,2,4-triazol-5-one (NTO): thermal decomposition. Thermochim Acta 213(1):165–175CrossRefGoogle Scholar
  43. 43.
    Beardall DJ, Botcher TR, Wight CA (1996) Explosive thermal decomposition mechanism of NTO. Mater Res Soc Symp Proc 418:379–384CrossRefGoogle Scholar
  44. 44.
    Oxley JC, Smith JL, Yeager KE, Rogers E, Dong XX (1996) NTO decomposition studies. In: Brill TB, Russell TP, Tao WC, Wardle RB (eds) MRS decomposition, combustion, & detonation chemistry of energetic materials 418:135.  https://doi.org/10.1557/PROC-418-135
  45. 45.
    Menapace JA, Marlin JE, Bruss DR, Dascher RV (1991) Photochemical and thermochemical decomposition of 3-nitro-1,2,4-triazol-5-one and predeuterio-3-nitro-1,2,4-triazol-5-one in neat and mixed systems. J Phys Chem 95(14):5509–5517Google Scholar
  46. 46.
    Garland NL, Ladouceur HD, Nelson HH (1997) Laser-induced decomposition of NTO. J Phys Chem A 101:8508–8512CrossRefGoogle Scholar
  47. 47.
    Kondrikov BN, Smirnov P, Minakin AV, Doherty RM (2004) Chemical kinetics of the thermal decomposition of NTO. Propellants, Explos, Pyrotech 29(1):27–33CrossRefGoogle Scholar
  48. 48.
    Brill TB, Gongwer PE, Williams GK (1994) Thermal decomposition of energetic materials 66 kinetic compensation effects in HMX, RDX, NTO. J Phys Chem 98:12242–12247CrossRefGoogle Scholar
  49. 49.
    Ostmark H, Bergman H, Aqrist G, Langlet A, Persson B (June 1991) Decomposition of NTO: some initial observations. In: Sixteenth international pyrotechnics seminar, Jonkijping, Sweden, pp 874–886Google Scholar
  50. 50.
    Oxley JC, Zhou Z, Smith JL, McKenney RL (March 21–24 1994) Thermal decomposition studies on NTO and NTO/TNT. In: Proceedings of the ADPA international symposium on energetic materials technology international symposium on energetic materials technology, meeting #450, Florida, USA, 21–24 March, American Defense Preparedness Association, pp 155–165Google Scholar
  51. 51.
    Yi X, Hu R, Wang X, Fu X, Zhu C (1991) Thermal behaviour of 3-nitro-1,2,4-triazol-5-one and its salts. Thermochim Acta 189:283–296CrossRefGoogle Scholar
  52. 52.
    Vakul’skaya TI, Titova, IA, Dolgushin, GV, Loppyrev, VA (2005) Free radicals in various C-amination reactions of 1-methyl-4-nitropyrazole. Magnetic Resonance in Chemistry 43:1023–1027Google Scholar
  53. 53.
    Vakul’skaya TI, Rakhmatulina TN, Pevzner MS, Kofman TP, Lopyrev VA (1987) EPR and polarography of nitroazoles. 6. 3-Nitro-1,2,4-triazoles. Chem Heterocycl Comp 23(3):287–291Google Scholar
  54. 54.
    Lopyrev VA, Larina LI, Sosonkin IM, Vakul’skaya TI, Kalb GL, Shibanova EF (1985) EPR and polarography of nitroazoles. 5. First step in the electrochemical reduction of 2-substituted 5(6)-nitrobenzimidazole using a rotating platinum ring-disk electrode. Chem Heterocycl Comp 21:688 (Translated from Khim. Geterotsikl Soedin 21(6):827–832 (June 1985); Chemosphere 38(7):1561–1570)Google Scholar
  55. 55.
    Campion LL, Giannotti C, Ouazzani J (1999) Photocatalytic degradation of 5-nitro-1,2,4-triazol-3-one NTO in aqueous solution of TiO2. Comparison with Fenton oxidation. Chemosphere 38(7):1561–1570CrossRefGoogle Scholar
  56. 56.
    Campion LL, Vandais A, Ouazzani J (1999) Microbial remediation of NTO in aqueous industrial wastes FEMS. Microbiol Lett 176:197–203CrossRefGoogle Scholar
  57. 57.
    Sarlauskas J, Nemeikaite-Ceniene A, Anusevicius Z, Miseviciene L, Maroziene A, Markevicius A, Cenas N, Naturforsch Z (2004) Enzymatic redox properties of novel nitrotriazole explosives implications for their toxicity. 59(5–6):399–404Google Scholar
  58. 58.
    Hiyoshi RI, Kohno Y, Nakamura J (2004) Vibrational assignment of energetic material 5-Nitro-2,4-dihydro-1,2,4-triazol-3-one (NTO) with labeled isomers. J Phys Chem A 108:5915–5920CrossRefGoogle Scholar
  59. 59.
    Lewis ML, Lewis IR, Griffiths PR (2005) Raman spectrometry of explosives with a no-moving-parts fiber coupled spectrometer: a comparison of excitation wavelength. Vib Spectrosc 38:17–28CrossRefGoogle Scholar
  60. 60.
    Lee K-Y, Coburn MD (1985) 3-nitro-l,2,4-triazol-5-one, a less sensitive explosive. LA-10302-MS Los Alamos National Laboratory Los Alamos, USAGoogle Scholar
  61. 61.
    Lee K-Y, Coburn MD (1988) 3-nitro-l,2,4-triazol-5-one, a less sensitive explosive. US Patent 4,733,610Google Scholar
  62. 62.
    Lee K-Y, Chapman LB, Coburn MD (1987) 3-nitro-l,2,4 triazol-5-one, a less sensitive explosive. J Energ Mater 5:27–33CrossRefGoogle Scholar
  63. 63.
    Barnard PW, Fouche FC, Bezuidenhout HC (1997) Less sensitive TNT based formulations. In: Australasian explosive ordnance symposium (Parari ’97) 3rd Canberra, Australia, 12–14Google Scholar
  64. 64.
    Becuwe A, Delclos A (1993) Low-sensitivity explosive compounds for low vulnerability warheads. Propellants, Explos, Pyrotech 18:1–10CrossRefGoogle Scholar
  65. 65.
    Marecek P, Pokornä J, Vävra P (1998) A study of some insensitive explosives. In: International conference of ICT 29th Karlsruhe Federal Republic of Germany 30 June–3 July, Fraunhofer-Institut Für Chemische Technologie Berghausen, Bundesrepublik, Deutschland 52(l):52(5)Google Scholar
  66. 66.
    Graham KJ, Williams EM, Lynch RD, Floyd TG, Struck SR (1994) Reducing the sensitivity of high-performance warhead fills. In: Insensitive munitions technology symposium, meeting #471, Virginia, USA 6–9 June, American Defense Preparedness Association, pp 541–563Google Scholar
  67. 67.
    Sanderson AJ (1997) A draft sheet for 3-nitro-l,2,4-triazol-5-one. The NIMIC Coordinated Characterisation ProgramGoogle Scholar
  68. 68.
    Agrawal JP, Walley SM, Field JE (1998) A high-speed photographic study of the impact initiation of hexanitro hexaaza isowurtzitane and nitrotriazolone. Combus Flame 112:62–72CrossRefGoogle Scholar
  69. 69.
    Fouche FC, van Schalkwyk GC (1996) TNT-based insensitive munitions. In: International conference of ICT 27th Karlsruhe Federal Republic of Germany, 25–28 June, Fraunhofer-Institut Für Chemische Technologie Berghausen, Bundesrepublik, Deutschland 69(1):69(12)Google Scholar
  70. 70.
    Hall TN, Holden JR (1988) Navy explosives handbook explosive effects and properties, part III properties of explosives and explosive compositions. NSWC MP 88-116 White Oak Laboratory Naval Surface Warfare Centre, Maryland, USAGoogle Scholar
  71. 71.
    Popolato A, Forsberg HC, Gritzo LA (1957). In: Popolato A (ed) Handbook of properties of some explosives of interest to GMX-division. May 24, 1957 (CRD)Google Scholar
  72. 72.
    Doherty RM, Simpson RL (1997) A comparative evaluation of several insensitive high explosives. In: International conference of ICT 28th Karlsruhe Federal Republic of Germany, 24–27 June, Fraunhofer-Institut Für Chemische Technologie Berghausen, Bundesrepublik, Deutschland 32(l):32(23)Google Scholar
  73. 73.
    Dobratz BM (1981) LLNL explosives handbook properties of chemical explosives and explosive simulants. Lawrence Livermore National Laboratory, California, USAGoogle Scholar
  74. 74.
    Becuwe A, Delclos A (1987) L’Oxynitrotriazole et son Utilisation et tant Qu’Explosif Insensible. In: International conference of ICT 18th Karlsruhe Federal Republic of Germany, 1–3 July, Fraunhofer-Institut Für Chemische Technologie Berghausen, Bundesrepublik, Deutschland 27(1):27(14)Google Scholar
  75. 75.
    Becuwe A, Delclos A (1987) Oxynitrotriazole and it’s use as insensitive explosive. In: Jing D (ed) International symposium on pyrotechnics and explosives 1st Beijing China 12–15 Oct, China Academic Publishers Beijing China 255–261Google Scholar
  76. 76.
    Sanderson AJ (1994) A programme and data for the characterisation of new ingredients for energetic materials. The NIMIC Coordinated Characterisation Programme 110:57–62Google Scholar
  77. 77.
    Sanderson AJ (1997) A draft sheet for 3-nitro-l,2,4-triazol-5-one. The NIMIC Coordinated Characterisation ProgramGoogle Scholar
  78. 78.
    Zeman V, Zeman S (1997) Relationship between the electric spark sensitivity and detonation velocities of some polynitro compounds. In: International conference of ICT 28th Karlsruhe Federal Republic of Germany, 24–27 June, Fraunhofer-Institut Für Chemische Technologie Berghausen, Bundesrepublik, Deutschland 67(1):67(10)Google Scholar
  79. 79.
    Aubert SA, Corley JD, Glenn JG (1993) Development of TNTO composite explosives. WL-TR-92-7073 Wright Laboratory Eglin Air Force Base, Florida, USAGoogle Scholar
  80. 80.
    Zeman V, Zeman S (1997) Relationship between the electric spark sensitivity and detonation velocities of some polynitro compounds. In: International conference of ICT 28th Karlsruhe Federal Republic of Germany, 24–27 June, Fraunhofer-Institut Für Chemische Technologie Berghausen, Bundesrepublik, Deutschland 67(1):67(10)Google Scholar
  81. 81.
    Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations I a simple method for calculating detonation properties of C-H-N-O explosives. J Chem Phys 48(1):23–35CrossRefGoogle Scholar
  82. 82.
    Aubert SA, Corley JD, Glenn JG (1993) Development of TNTO composite explosives. WL-TR-92-7073 Wright Laboratory, Eglin Air Force Base, Florida, USAGoogle Scholar
  83. 83.
    Corley JD, Stewart AC (1995) Fuzed insensitive general purpose bomb containing AFX-645. Final Report WL-TR-95-7019 Wright Laboratory, Eglin Air Force Base, Florida, USAGoogle Scholar
  84. 84.
    Hammer JO, Skjold E, Kildal SK, Gjersoe R, Mathieu J, Berger B, Mäder P, Bircher HR (1997) Formulation of NTO based compositions. In: Insensitive munitions and energetic materials technology symposium event #854, Florida, USA, 6–9 Oct, National Defense Industrial AssociationGoogle Scholar
  85. 85.
    Bircher HR, Mathieu J, Berger B, Mäder P, Skjold E, Kildal SK, Gjersoe R, Hammer JO (1997) Vulnerability and performance of NTO based high explosives. In: Insensitive munitions and energetic materials technology symposium event #854, Florida, USA, 6–9 Oct, National Defense Industrial AssociationGoogle Scholar
  86. 86.
    Becuwe A, Isler J (1997) Extremely insensitive detonating substances (EIDS) for 16 munitions applications. In: Insensitive munitions and energetic materials technology symposium event #854, Florida, USA 6–9 Oct, National Defense Industrial AssociationGoogle Scholar
  87. 87.
    Becuwe A, Delclos A, Isler J (1995) EIDS high explosives for 16 munitions. In: International symposium on energetic materials technology meeting #680, Arizona, USA, 24–27 Sept, American Defense Preparedness Association,pp 119–124Google Scholar
  88. 88.
    Becuwe A, Delclos A, Donzel G, Golfier M (1997) Improvements in NTO based PBXs a new powerful and insensitive class of PBX. In: Insensitive munitions and energetic materials technology symposium event #854, Florida, USA, 6–9 Oct, National Defense Industrial AssociationGoogle Scholar
  89. 89.
    Becuwe A, Delclos A (1989) Use of oxynitrotriazole to prepare an insensitive high explosive. In: Symposium (international) on detonation 9th HI Oregon, USA, 28 Aug–l Sept, pp 871–876Google Scholar
  90. 90.
    Becuwe A, Delclos A, Donzel G, Golfier M (1998) Improvements in NTO based PBXs. In: International conference of ICT 29th Karlsruhe Federal Republic of Germany, 30 June–3 July, Fraunhofer-Institut Für Chemische Technologie Berghausen, Bundesrepublik, Deutschland 95(l):95(5)Google Scholar
  91. 91.
    Quidot M, Hamaide S, Groux J, Gimenez P, Isler JC (1993) Fragment impact initiation of cast PBXs in relation with shock sensitivity tests. In: International detonation symposium 10th Massachusetts, USA, 12–16, July Office of Naval Research, Virginia, USA, pp 113–121Google Scholar
  92. 92.
    Lamy P, Leiber C-O, Cumming AS, Zimmer M (1996) Air senior national representative long term technology project on insensitive high explosives (IHEs) studies of high energy insensitive high explosives. In: International conference of ICT 27th Karlsruhe Federal Republic of Germany, 25–28ÜI June, Fraunhofer-Institut Für Chemische Technologie Berghausen, Bundesrepublik, Deutschland 1(1):1(14)Google Scholar
  93. 93.
    Nouguez B (1994) Dual formulation warheads: a mature technology. In: Insensitive munitions technology symposium meeting #471, Virginia, USA, 6–9 June, American Defense Preparedness Association, pp 280–287Google Scholar
  94. 94.
    Becuwe A, Delclos A, Donzel G, Golfier M (1997) Improvements in NTO based PBXs a new powerful and insensitive class of PBX. In: Insensitive munitions and energetic materials technology symposium event #854, Florida, USA, 6–9 Oct, National Defense Industrial AssociationGoogle Scholar
  95. 95.
    Kayser V, Boussufe R, Kihm JF, Deneuville P, Pascal S (1994) Use of cast PBX in insensitive high performance shaped charges. In: Insensitive munitions technology symposium meeting #471, Virginia, USA, 6–9 June, American Defense Preparedness Association, pp 574–584Google Scholar
  96. 96.
    Spear RJ, Dagley IJ, Whitty P (1994) Options for future RAAF GP bombs meeting IM and/ or HD 16 criteria. DSTO-CIC-0001 Aeronautical and Maritime Research Laboratory, Melbourne, AustraliaGoogle Scholar
  97. 97.
    Senn MR, Newman KE, Wise TE, Jones WS (1990) Chemicals and processing assessment of candidate explosives for the advanced bomb family. IHTR-1370 Naval Ordnance Station Indian Head, USAGoogle Scholar
  98. 98.
    Wilson LT, Reedal DR, Simpson BM (1997) Comparison of PBXW-126 and PBXC-129 for use in large fragmenting warheads. In: Insensitive munitions and energetic materials technology symposium event #854, Florida, USA, 6–9 Oct, National Defense Industrial AssociationGoogle Scholar
  99. 99.
    Murphy MJ, Simpson RL, Urtiew PA, Souers PC, Garcia F, Garza RG (1995) Reactive flow model development for PBXW-126 using modern nonlinear optimisation methods. In: Schmidt SC, Tao WC (eds) Conference of the American physical society topical group on shock compression of condensed matter, American Institute of physics conference proceedings 370 Washington, USA, 13–18 Aug, AIP Press, New York, USA, pp 417–420Google Scholar
  100. 100.
    Cumming AS, Gaulter SE, Leach CJ (1994) The formulation of an insensitive high explosive based on HMX, NTO and PolyNIMMO. In: Insensitive munitions technology symposium meeting #471, Virginia, USA, 6–9 June, American Defense Preparedness Association, pp 376–382Google Scholar
  101. 101.
    Cumming AS (1997) Part 1—focus area reports. Technical panel WTP-4 energetic materials and propulsion technology. Volume III, UK, 14–18 April, The Technical Cooperation Program, pp 97–99Google Scholar
  102. 102.
    Leach CJ, Garaty BJ, Cox KJ (1997) Progress in aluminised IHE. The Technical Cooperation Program Technical panel W-4 energetic materials and propulsion technology. In: 22nd meeting, United Kingdom, 14–18 April, pp 1–8Google Scholar
  103. 103.
    Mclntosh G (1997) Effect of 245 GHz microwave radiation on diverse explosives. DREV-TM-9702 Defence Research Establishment Valcartier, Quebec, CanadaGoogle Scholar
  104. 104.
    Aubert SA (1994) Characterisation of the hydrodynamic performance properties of NTO and TNTO composite explosives. WL-TR-94-7037 Wright Laboratory, Eglin Air Force Base, Florida, USAGoogle Scholar
  105. 105.
    Trzcinski WA, Szymanczyk L (2005) Detonation properties of low-sensitivity NTO-based explosives. Energ Mater 23:151–168CrossRefGoogle Scholar
  106. 106.
    London JE, Smith DM (1985) A toxicological study of NTO. Report No LA-10533-MS UC-48Google Scholar
  107. 107.
    Sarlauskas J, Nemeilaite-Ceniene A, Anusevicius Z, Miseviciene L, Maroziene A, Markevicius A, Cenas N (2004) Enzymatic redox properties of novel nitrotriazole explosives implications for their toxicity. Z Naturforsch 59c:399–404Google Scholar
  108. 108.
    Reddy G, Song J, Kirby P, Lenta EM, Crousea LCB, Johnson MS (2011) Genotoxicity assessment of an energetic propellant compound, 3-nitro-1,2,4-triazol-5-one (NTO). Mutation Res 719:35–40CrossRefGoogle Scholar
  109. 109.
    Tabrizchi M, Lbeigi VI (2010) Detection of explosives by positive corona discharge ion mobility spectrometry. J Hazard Mater 176:692–696CrossRefGoogle Scholar
  110. 110.
    Oehrle SA (1997) Analysis of 3-nitro- 1,2,4-triazole-5-one (NTO) in explosive mixtures by capillary electrophoresis. Propellants Explos Pyrotech 22:1–3CrossRefGoogle Scholar

Additional Scholarly Articles for Further Reading

  1. 111.
    Amandurdyeva AD, Saraev VV, Kuz’mina NE, Golod EL (2004) Adamantylazoles: VIII. Acid-catalyzed adamantylation of 1,2,4-triazol-5-ones. Russ J Gen Chem 74(8):1277–1281. doi: 10.1007/s11176-005-0151-z
  2. 112.
    Andes FS, III (1974) Identification of kinetic performance losses of NTO/MMH. Air Force Rocket Propulsion Laboratory, 45 ppGoogle Scholar
  3. 113.
    Asahi H, Inabe T (1994) Charge-transfer complexes of 1,4,5,8-naphthalenetetrones and 1,4,9,10-anthracenetetrones. Novel acceptors for electrically conducting materials. Chem Mater 6(10):1875–1879. doi: 10.1021/cm00046a050 CrossRefGoogle Scholar
  4. 114.
    Asahi H, Inabe T (1995) Novel conductive charge-transfer complexes of 1,4,5,8-naphthalenetetrone (NTO) and 1,4,9,10-anthracenetetrone (ATO). Synth Met 70(1–3):1117–1118. doi: 10.1016/0379-6779(94)02780-3 CrossRefGoogle Scholar
  5. 115.
    Bak A, Maranda A, Nowaczewski J, Szerszen M (2006) Some properties of high explosive mixtures of low sensitivity to external stimuli. Cent Eur J Energ Mater 3(3):53–64Google Scholar
  6. 116.
    Barnes MW, Deppert TM, Taylor RD (1996) Gas-generating compositions using dicyanamide salts as fuel. US5544687AGoogle Scholar
  7. 117.
    Beard BC, Sharma J (1993) Early decomposition chemistry of NTO, (3-nitro-1,2,4-triazol-5-one). J Energ Mater 11(4–5):325–343. doi: 10.1080/07370659308019715 CrossRefGoogle Scholar
  8. 118.
    Becuwe A, Delclos A, Isler J (1995) EIDS high explosives for 1.6 munitions. American Defense Preparedness Association, pp 119–124Google Scholar
  9. 119.
    Bhatnagar N, Kamath G, Potoff JJ (2013) Prediction of 1-octanol-water and air-water partition coefficients for nitro-aromatic compounds from molecular dynamics simulations. Phys Chem Chem Phys 15(17):6467–6474. doi: 10.1039/c3cp44284e CrossRefGoogle Scholar
  10. 120.
    Boddu VM, Maloney SW (2012) Physical properties of insensitive munitions compounds for developing wastewater treatment technologies, vol 3. Air & Waste Management Association, pp 1958–1965Google Scholar
  11. 121.
    Bolotina N, Kirschbaum K, Pinkerton AA (2005) Energetic materials: α-NTO crystallizes as a four-component triclinic twin. Acta Crystallogr, Sect B: Struct Sci B 61(5):577–584. doi: 10.1107/S0108768105022792 CrossRefGoogle Scholar
  12. 122.
    Bolotina NB, Zhurova EA, Pinkerton AA (2003) Energetic materials: variable-temperature crystal structure of β-NTO. J Appl Crystallogr 36(2):280–285. doi: 10.1107/S002188980300092X CrossRefGoogle Scholar
  13. 123.
    Borro-Escribano B, Martinez-Alpuente I, Blanco AD, Torrente J, Fernandez-Manjon B, Matesanz R (2013) Application of game-like simulations in the Spanish Transplant National Organization. Transplant Proc 45(10):3564–3565CrossRefGoogle Scholar
  14. 124.
    Botcher TR, Beardall DJ, Wight CA, Fan L, Burkey TJ (1996) Thermal decomposition mechanism of NTO. J Phys Chem 100(21):8802–8806. doi: 10.1021/JP952984Y CrossRefGoogle Scholar
  15. 125.
    Brill TB, Zhang TL, Tappan BC (2000) Thermal decomposition of energetic materials 74. Volatile metal isocyanates from flash pyrolysis metal-NTO and metal-picrate salts and an application hypothesis. Combust Flame 121(4):662–670. doi: 10.1016/S0010-2180(99)00172-8 CrossRefGoogle Scholar
  16. 126.
    Can Z, Uezer A, Tekdemir Y, Ercag E, Tuerker L, Apak R (2012) Spectrophotometric and chromatographic determination of insensitive energetic materials: HNS and NTO, in the presence of sensitive nitro-explosives. Talanta 90:69–76. doi: 10.1016/j.talanta.2011.12.077 CrossRefGoogle Scholar
  17. 127.
    Catoire L, Chaumeix N, Paillard C (2004) Chemical kinetic model for monomethylhydrazine/nitrogen tetroxide gas-phase combustion and hypergolic ignition. J Propul Power 20(1):87–92. doi: 10.2514/1.9234 CrossRefGoogle Scholar
  18. 128.
    Chakka S, Boddu VM, Maloney SW, Damavarapu R (2008) Prediction of physicochemical properties of energetic materials via EPI suite. American Institute of Chemical Engineers, pp 437/1–437/10Google Scholar
  19. 129.
    Chakka S, Boddu VM, Maloney SW, Toghiani RK, Damavarapu R (2009) Vapor pressures and melting points of select munitions compounds. American Institute of Chemical Engineers, pp chakk1/1–chakk1/9Google Scholar
  20. 130.
    Chang C-R et al (2008) Molecular structure, theoretical calculation and thermal behavior of DAG (NTO). Chin J Chem 26(9):1549–1554. doi: 10.1002/cjoc.200890280 CrossRefGoogle Scholar
  21. 131.
    Chang CW, Wong YM, Chang TC, Chen C (1997) AM1 study of ammonium 3-nitro-1,2,4-triazole-5-onate (ANTO). Propellants, Explos, Pyrotech 22(4):240–241CrossRefGoogle Scholar
  22. 132.
    Ciezak JA, Trevino SF (2005) Theoretical and experimental study of the inelastic neutron scattering spectra of β-5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one. J Mol Struct: THEOCHEM 732(1–3):211–218. doi: 10.1016/j.theochem.2005.07.022 CrossRefGoogle Scholar
  23. 133.
    Ciller JA, Serna FJ, Quintana JR (1992) Thermal characterization of mixtures of nitrotriazolone with HMX and RDX. J Energ Mater 10(4–5):251–265. doi: 10.1080/07370659208018925 CrossRefGoogle Scholar
  24. 134.
    Coburn MD, Lee KY (1990) Picryl derivatives of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one. J Heterocycl Chem 27(3):575–577. doi: 10.1002/jhet.5570270318 CrossRefGoogle Scholar
  25. 135.
    Cortial S, Chaignon P, Sergent D, Dezard S, Ouazzani J (2012) Dehydrogenation, oxidative denitration and ring contraction of N, N-dimethyl-5-nitrouracil by a Bacillus nitroreductase Nfr-A1. J Mol Catal B Enzym 76:1–8. doi: 10.1016/j.molcatb.2011.11.014 CrossRefGoogle Scholar
  26. 136.
    Cronin MP, Day AI, Wallace L (2007) Electrochemical remediation produces a new high-nitrogen compound from NTO wastewaters. J Hazard Mater 149(2):527–531. doi: 10.1016/j.jhazmat.2007.08.007 CrossRefGoogle Scholar
  27. 137.
    Crouse LCB, Lent EM, Leach GJ (2015) Oral toxicity of 3-nitro-1,2,4-triazol-5-one in rats. Int J Toxicol 34(1):55–66. doi: 10.1177/1091581814567177 CrossRefGoogle Scholar
  28. 138.
    Cuddy MF, Poda AR, Chappell MA (2014) Estimations of vapor pressures by thermogravimetric analysis of the insensitive munitions IMX-101, IMX-104, and individual components. Propellants, Explos, Pyrotech 39(2):236–242. doi: 10.1002/prep.201300069 CrossRefGoogle Scholar
  29. 139.
    Cudzilo S, Trzcinski WA (2001) A study on detonation characteristics of pressed NTO. J Energ Mater 19(1):1–21. doi: 10.1080/07370650108219390 CrossRefGoogle Scholar
  30. 140.
    Cumming AS (1995) Characteristics of novel United Kingdom energetic materials. American Defense Preparedness Association, pp 69–74Google Scholar
  31. 141.
    Daimon Y, Terashima H, Koshi M (2014) Chemical kinetics of hypergolic ignition in N2H4/N2O4-NO2 gas mixtures. J Propul Power 30(3):707–716. doi: 10.2514/1.B35004 CrossRefGoogle Scholar
  32. 142.
    Dauerman L, Fraser W (1970) Preignition products from propellants at simulated high altitude conditions (Comment). Combust Sci Technol 2(4):177–178. doi: 10.1080/00102207008952246 CrossRefGoogle Scholar
  33. 143.
    De Paz JLG, Ciller J (1993) On the use of AM1 and PM3 methods on energetic compounds. Propellants, Explos, Pyrotech 18(1):33–40. doi: 10.1002/prep.19930180107 CrossRefGoogle Scholar
  34. 144.
    Deguchi K, Kanno K, Miyagawa H (1976) Application of the natural transition orbital (NTO) method to excited states. Chem Phys Lett 39(1):169–173. doi: 10.1016/0009-2614(76)85222-0 CrossRefGoogle Scholar
  35. 145.
    Delpeyroux D, Charrue P, Simonetti P (1998) Calculation of the energetic performances of explosives: prediction of the heat of formation. High Temp - High Pressures 30(5):625–628. doi: 10.1068/htec351 CrossRefGoogle Scholar
  36. 146.
    Dlott DD, Hambir S, Franken J (1998) The new wave in shock waves. J Phys Chem B 102(12):2121–2130. doi: 10.1021/JP973404V CrossRefGoogle Scholar
  37. 147.
    Ebrahimbeiki Chimeh A, Montazer M, Rashidi A (2013) Conductive and photoactive properties of polyethylene terephthalate fabrics treated with nano TiO2/nano carbon blacks. Carbon 64:559. doi: 10.1016/j.carbon.2013.07.080 CrossRefGoogle Scholar
  38. 148.
    Elijosiute E, Jankunaite D, Eicher-Lorka O (2015) TD-DFT study of the electronic absorption spectra of iron(III) monoisothiocyanate. Polyhedron 90:41–46. doi: 10.1016/j.poly.2015.01.034 CrossRefGoogle Scholar
  39. 149.
    Ellis GJ, Bezuidenhout HC (1999) Determination of the detonation energy and some of the energetic characteristics of various NTO-based formulations. In: International Annual Conference ICT 30th:63/1–63/10Google Scholar
  40. 150.
    Fan L, Dass C, Burkey TJ (1996) Synthesis and thermal decomposition of 15 N-labeled NTO. J Labelled Compd Radiopharm 38(1):87–94. doi: 10.1002/(SICI)1099-1344(199601)38:1<87:AID-JLCR819>3.0.CO;2-I CrossRefGoogle Scholar
  41. 151.
    Fang G, Xu L, Hu X, Li X (2008) DFT study of the interaction between 3-nitro-1,2,4-triazole-5-one and hydrogen fluoride. J Hazard Mater 160(1):51–55. doi: 10.1016/j.jhazmat.2008.02.082 CrossRefGoogle Scholar
  42. 152.
    Festoff BW (ed) (1990) NATO ASI series. Series A, life sciences, vol 191: serine proteases and their serpin inhibitors in the nervous system: regulation in development and in degenerative and malignant disease. In: Proceedings of a NTO advanced research workshop on regulation of extravascular fibrinolysis in nervous system development and disease, Held 2–8 July 1989, Plenum Press, Marater, ItalyGoogle Scholar
  43. 153.
    Finch A, Gardner PJ, Head AJ, Majdi HS (1991) The enthalpies of formation of 1,2,4-triazol-5-one and 3-nitro-1,2,4-triazol-5-one. J Chem Thermodyn 23(12):1169–1173. doi: 10.1016/S0021-9614(05)80150-8 CrossRefGoogle Scholar
  44. 154.
    Finch A, Gardner PJ, Head AJ, Majdi HS (1993) The standard enthalpies of formation of the ammonium and silver salts of 3-nitro-1,2,4-triazol-5-one. Thermochim Acta 213(1–2):17–22. doi: 10.1016/0040-6031(93)80003-S CrossRefGoogle Scholar
  45. 155.
    Franken J, Hambir SA, Dlott DD (1998) Ultrafast spectroscopy of laser-driven shock waves in molecular materials. Mol Cryst Liq Cryst Sci Technol, Sect A 314:25–36. doi: 10.1080/10587259808042453 CrossRefGoogle Scholar
  46. 156.
    Grau H, Gandzelko A, Samuels P (2014) Solubility determination of raw energetic materials in molten 2,4-dinitroanisole. Propellants, Explos, Pyrotech 39(4):604–608. doi: 10.1002/prep.201300083 CrossRefGoogle Scholar
  47. 157.
    Guillemin JP, Menard Y, Brunet L, Bonnefoy O, Thomas G (2008) Development of a new mixing rheometer for studying rheological behaviour of concentrated energetic suspensions. J Non-Newtonian Fluid Mech 151(1–3):136–144. doi: 10.1016/j.jnnfm.2007.12.007 CrossRefGoogle Scholar
  48. 158.
    Guillemin J-P, Brunet L, Bonnefoy O, Thomas G (2007) A flow time model for melt-cast insensitive explosive process. Propellants, Explos, Pyrotech 32(3):261–266. doi: 10.1002/prep.200700028 CrossRefGoogle Scholar
  49. 159.
    Hahma A (1995) On the combustion of Al under detonation; experimental and theoretical studies. American Defense Preparedness Association, pp 153–159Google Scholar
  50. 160.
    Halcy M, Kuperman RG, Checkai RT (2009) Aquatic toxicity of 3-nitro-1,2,4-triazol-5-one. DIR, ECBC, pp 2, 7–27Google Scholar
  51. 161.
    Harding JT, Fry V, Tuffias RH, Kaplan RB (1987) Oxidation resistance of CVD (chemical vapor deposition) coatings. Ultramet, 29 ppGoogle Scholar
  52. 162.
    Hare DE et al (1996) Ultrafast dynamics of shock waves and shocked energetic materials. Mater Res Soc Symp Proc 418(Decomposition, Combustion, and Detonation Chemistry of Energetic Materials):337–348Google Scholar
  53. 163.
    Hayashi R, Kowhakul W, Susa A, Koshi M (2009) Detection of explosives using a vacuum ultraviolet ionization time-of-flight mass spectrometry (VUV-TOFMS). Sci Technol Energ Mater 70(3):62–67Google Scholar
  54. 164.
    He B, Nie W, Feng S, Su L, Zhuang F (2013) Effects of NTO oxidizer temperature and pressure on hypergolic ignition delay and life time of UDMH organic gel droplet. Propellants, Explos, Pyrotech 38(5):665–684. doi: 10.1002/prep.201200160 CrossRefGoogle Scholar
  55. 165.
    He B, Nie W, He H (2012) Unsteady combustion model of no metalized organic gel fuel droplet. Energy Fuels 26(11):6627–6639. doi: 10.1021/ef300990d CrossRefGoogle Scholar
  56. 166.
    Hidding B, Pfitzner M, Bruno C, Simone D (2008) Silanes/H2O2: a high-performance synthetic bipropellant for chemical space propulsion. J Propul Power 24(1):150–153. doi: 10.2514/1.30346 CrossRefGoogle Scholar
  57. 167.
    Hiyoshi RI, Brill TB (2002) Thermal decomposition of energetic materials 83. Comparison of the pyrolysis of energetic materials in air versus argon. Propellants, Explos, Pyrotech 27(1):23–30. doi: 10.1002/1521-4087(200203)27:1<23::AID-PREP23>3.0.CO;2-B
  58. 168.
    Hiyoshi RI et al (2006) Effect of pressure on the vibrational structure of insensitive energetic material 5-nitro-2,4-dihydro-1,2,4-triazole-3-one. J Phys Chem A 110(32):9816–9827. doi: 10.1021/jp063142+ CrossRefGoogle Scholar
  59. 169.
    Hoyt N et al (2013) Biomarkers of oral exposure to 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN) in blood and urine of rhesus macaques (Macaca mulatta). Biomarkers 18(7):587–594. doi: 10.3109/1354750X.2013.829522 CrossRefGoogle Scholar
  60. 170.
    Irfan I, Sawangjaroen N, Bhat AR, Azam A (2010) New dioxazole derivatives: synthesis and effects on the growth of Entamoeba histolytica and Giardia intestinalis. Eur J Med Chem 45(4):1648–1653. doi: 10.1016/j.ejmech.2009.12.051 CrossRefGoogle Scholar
  61. 171.
    Ishikawa Y, McQuaid MJ (2007) Reactions of NO2 with CH3NHNH and CH3NNH2: a direct molecular dynamics study. J Mol Struct: THEOCHEM 818(1–3):119–124. doi: 10.1016/j.theochem.2007.05.014 CrossRefGoogle Scholar
  62. 172.
    Jadhav HS, Talawar MB, Dhavale DD, Asthana SN, Krishnamurthy VN (2005) Synthesis, characterization and thermolysis of 2,4-dihydro -2,4,5-trinitro-3H-1,2,4-triazol-3-one (DTNTO): a new derivative of 3-nitro-1,2,4-triazol-5-one (NTO). Indian J Eng Mater Sci 12(5):467–471Google Scholar
  63. 173.
    Jokela K, Kalsch I (2004) Decontamination of MMH- and NTO/MON-propellant tanks. Eur Space Agency, [Spec Publ] SP SP-555(Space Propulsion 2004):157–161Google Scholar
  64. 174.
    Joo Y-H, Gao H, Zhang Y, JnM Shreeve (2010) Inorganic or organic azide-containing hypergolic ionic liquids. Inorg Chem 49(7):3282–3288. doi: 10.1021/ic902224t CrossRefGoogle Scholar
  65. 175.
    Jung J-W, Kim K-J (2011) Effect of supersaturation on the morphology of coated surface in coating by solution crystallization. Ind Eng Chem Res 50(6):3475–3482. doi: 10.1021/ie102099a CrossRefGoogle Scholar
  66. 176.
    Keshavarz MH, Pouretedal HR, Semnani A (2007) Novel correlation for predicting impact sensitivity of nitroheterocyclic energetic molecules. J Hazard Mater 141(3):803–807. doi: 10.1016/j.jhazmat.2006.07.046 CrossRefGoogle Scholar
  67. 177.
    Keshavarz MH, Sadeghi H (2009) A new approach to predict the condensed phase heat of formation in acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds. J Hazard Mater 171(1–3):140–146. doi: 10.1016/j.jhazmat.2009.05.118 CrossRefGoogle Scholar
  68. 178.
    Kim KJ (2000) Spherulitic crystallization of 3-nitro-1,2,4-triazol-5-one in water + N-methyl-2-pyrrolidone. J Cryst Growth 208(1–4):569–578. doi: 10.1016/S0022-0248(99)00408-X CrossRefGoogle Scholar
  69. 179.
    Kim K-J, Kim H-S (2008) Agglomeration of NTO on the surface of HMX particles in water-NMP solvent. Cryst Res Technol 43(1):87–92. doi: 10.1002/crat.200710946 CrossRefGoogle Scholar
  70. 180.
    Kim K-J, Kim M-J, Lee J-M, Kim S-H, Kim H-S, Park B-S (1998) Experimental solubility and density for 3-nitro-1,2,4-triazol-5-one + C1 to C7 1-alkanols. Fluid Phase Equilib 146(1, 2):261–268. doi: 10.1016/S0378-3812(98)00182-4
  71. 181.
    Kim YH, Lee K, Koo KK, Shul YG, Haam S (2002) Comparison study of mixing effect on batch cooling crystallization of 3-nitro-1,2,4-triazol-5-one (NTO) using mechanical stirrer and ultrasound irradiation. Cryst Res Technol 37(9):928–944. doi: 10.1002/1521-4079(200209)37:9<928:AID-CRAT928>3.0.CO;2-R CrossRefGoogle Scholar
  72. 182.
    Knowles PJ (1972) Helium absorption into nitrogen tetroxide (NTO) and Aerozine-50 (A-50). J Spacecr Rockets 9(9):708–709. doi: 10.2514/3.61782 CrossRefGoogle Scholar
  73. 183.
    Kohno Y, Takahashi O, Saito K (2001) Theoretical study of initial decomposition process of NTO dimer. Phys Chem Chem Phys 3(14):2742–2746. doi: 10.1039/b101745o CrossRefGoogle Scholar
  74. 184.
    Krause G (2012) Volume-dependent self-ignition temperatures for explosive materials. Propellants, Explos, Pyrotech 37(1):107–115. doi: 10.1002/prep.201100007 CrossRefGoogle Scholar
  75. 185.
    Krzmarzick MJ, et al. (2015) Biotransformation and Degradation of the Insensitive Munitions Compound, 3-nitro-1,2,4-triazol-5-one (NTO), by Soil Bacterial Communities. Environ Sci Technol. Ahead of Print. doi: 10.1021/acs.est.5b00511
  76. 186.
    Kulkarni PB, Purandare GN, Nair JK, Talawar MB, Mukundan T, Asthana SN (2005) Synthesis, characterization, thermolysis and performance evaluation studies on alkali metal salts of TABA and NTO. J Hazard Mater 119(1–3):53–61. doi: 10.1016/j.jhazmat.2004.12.014 CrossRefGoogle Scholar
  77. 187.
    Kulkarni PB et al (2005) Studies on salts of 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4,6-trinitroanilino benzoic acid (TABA): potential energetic ballistic modifiers. J Hazard Mater 123(1–3):54–60. doi: 10.1016/j.jhazmat.2005.04.010 CrossRefGoogle Scholar
  78. 188.
    Le Campion L, Adeline MT, Ouazzani J (1997) Separation of NTO related 1,2,4-triazole-3-one derivatives by a high performance liquid chromatography and capillary electrophoresis. Propellants, Explos, Pyrotech 22(4):233–237. doi: 10.1002/prep.19970220410 CrossRefGoogle Scholar
  79. 189.
    Le Campion L, Delaforge M, Noel JP, Ouazzani J (1998) Metabolism of 14C-labeled 5-nitro-1,2,4-triazol-3-one (NTO): comparison between rat liver microsomes and bacterial metabolic pathways. J Mol Catal B Enzym 5(1–4):395–402. doi: 10.1016/S1381-1177(98)00103-9 CrossRefGoogle Scholar
  80. 190.
    Le Campion L, Giannotti C, Ouazzani J (1999) Photocatalytic degradation of 5-nitro-1,2,4-triazol-3-one (NTO) in aqueous suspension of TiO2 comparison with Fenton oxidation. Chemosphere 38(7):1561–1570. doi: 10.1016/S0045-6535(98)00376-2 CrossRefGoogle Scholar
  81. 191.
    Lee JS, Jaw KS (2006) Thermal decomposition properties and compatibility of CL-20, NTO with silicone rubber. J Therm Anal Calorim 85(2):463–467. doi: 10.1007/s10973-005-7325-0 CrossRefGoogle Scholar
  82. 192.
    Li D, Haneda H, Hishita S, Ohashi N (2005) Visible-light-active nitrogen-containing TiO2 photocatalysts prepared by spray pyrolysis. Res Chem Intermed 31(4–6):331–341. doi: 10.1163/1568567053956653 CrossRefGoogle Scholar
  83. 193.
    Lin H, Zhu S-G, Zhang L, Peng X-H, Chen P-Y, Li H-Z (2013) Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of HMX/NTO cocrystal explosive. Int J Quantum Chem 113(10):1591–1599. doi: 10.1002/qua.24369 CrossRefGoogle Scholar
  84. 194.
    Linker BR et al (2015) Adsorption of novel insensitive munitions compounds at clay mineral and metal oxide surfaces. Environ Chem 12(1):74–84. doi: 10.1071/EN14065 CrossRefGoogle Scholar
  85. 195.
    Liu Z, Wu Q, Zhu W, Xiao H (2015) Vacancy-induced initial decomposition of condensed phase NTO via bimolecular hydrogen transfer mechanisms at high pressure: a DFT-D study. Phys Chem Chem Phys 17(16):10568–10578CrossRefGoogle Scholar
  86. 196.
    Long GT, Brems BA, Wight CA (2002) Thermal activation of the high explosive NTO: sublimation, decomposition, and autocatalysis. J Phys Chem B 106(15):4022–4026. doi: 10.1021/jp012894v CrossRefGoogle Scholar
  87. 197.
    Ma H et al (2009) Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO·DNAZ. J Hazard Mater 169(1–3):1068–1073. doi: 10.1016/j.jhazmat.2009.04.057 CrossRefGoogle Scholar
  88. 198.
    McMillen DF, Erlich DC, He C, Becker CH, Shockey DA (1997) Fracture-induced and thermal decomposition of NTO using laser ionization mass spectrometry. Combust Flame 111(3):133–160. doi: 10.1016/S0010-2180(97)00100-4 CrossRefGoogle Scholar
  89. 199.
    Muthurajan H, Sivabalan R, Talawar MB, Asthana SN (2004) Computer simulation for prediction of performance and thermodynamic parameters of high energy materials. J Hazard Mater 112(1–2):17–33. doi: 10.1016/j.jhazmat.2004.04.012 CrossRefGoogle Scholar
  90. 200.
    Najafi M, Samangani AK (2011) Non-isothermal kinetic study of the thermal decomposition of melamine 3-nitro-1,2,4-triazol-5-one salt. Propellants, Explos, Pyrotech 36(6):487–492. doi: 10.1002/prep.201000153 CrossRefGoogle Scholar
  91. 201.
    Nandi AK, Singh SK, Kunjir GM, Singh J, Mandal AK, Pandey RK (2013) Assay of the intensive high explosive 3-nitro-1,2,4-triazol-5-one (NTO) by acid-base titration. Cent Eur J Energ Mater 10(1):113–122Google Scholar
  92. 202.
    Nazari A, Montazer M, Dehghani-Zahedani M (2013) Nano TiO2 as a new tool for mothproofing of wool: protection of wool against Anthrenus verbasci. Ind Eng Chem Res 52(3):1365–1371. doi: 10.1021/ie302187c CrossRefGoogle Scholar
  93. 203.
    Nouguez B, Mahe B, Vignaud PO (2009) Cast PBX related technologies for IM shells and warheads. Sci Technol Energ Mater 70(6):135–139Google Scholar
  94. 204.
    Oestmark H, Bergman H, Aqvist G (1993) The chemistry of 3-nitro-1,2,4-triazol-5-one (NTO): thermal decomposition. Thermochim Acta 213(1–2):165–175. doi: 10.1016/0040-6031(93)80014-2 CrossRefGoogle Scholar
  95. 205.
    Osmont A, Catoire L, Klapotke TM, Vaghjiani GL, Swihart MT (2008) Thermochemistry of species potentially formed during NTO/MMH hypergolic ignition. Propellants, Explos, Pyrotech 33(3):209–212. doi: 10.1002/prep.200700213 CrossRefGoogle Scholar
  96. 206.
    Oxley JC, Smith JL, Rogers E, Dong XX (1997) NTO decomposition products tracked with 15 N labels. J Phys Chem A 101(19):3531–3536. doi: 10.1021/JP9640078 CrossRefGoogle Scholar
  97. 207.
    Oxley JC, Smith JL, Yeager KE (1995) Synthesis of 15 N-labeled isomers of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). J Energ Mater 13(1&2):93–105. doi: 10.1080/07370659508019345 CrossRefGoogle Scholar
  98. 208.
    Oxley JC, Smith JL, Zhou Z, McKenney RL (1995) Thermal decomposition studies on NTO. International Annual Conference ICT 26th(Pyrotechnics):28/1–28/15Google Scholar
  99. 209.
    Oxley JC, Smith JL, Zhou Z, McKenney RL (1995) Thermal decomposition studies on NTO and NTO/TNT. J Phys Chem 99(25):10383–10391. doi: 10.1021/j100025a047 CrossRefGoogle Scholar
  100. 210.
    Piotrowski T, Fraczak M, Buczkowski D, Paplinski A, Maranda A (2006) The ranking of explosives by use of material indices as proposed in the Temclev-Ex method. Cent Eur J Energ Mater 3(1–2):3–17Google Scholar
  101. 211.
    Powala D, Orzechowski A, Maranda A, Nowaczewski J, Lorek A (2004) Researches on new crystalline form of some insensitive high explosives in PBX. Cent Eur J Energ Mater 1(1):63–73Google Scholar
  102. 212.
    Prabhakaran KV, Naidu SR, Kurian EM (1994) XRD, spectroscopic and thermal analysis studies on 3-nitro-1,2,4-triazol-5-one. Thermochim Acta 241(1–2):199–212. doi: 10.1016/0040-6031(94)87018-7 CrossRefGoogle Scholar
  103. 213.
    Quinn MJ Jr, Bannon DI, Jackovitz AM, Hanna TL, Shiflett AA, Johnson MS (2014) Assessment of 3-nitro-1,2,4-triazol-5-one as a potential endocrine disrupting chemical in rats using the Hershberger and uterotrophic bioassays. Int J Toxicol 33(5):367–372. doi: 10.1177/1091581814548729 CrossRefGoogle Scholar
  104. 214.
    Russell AL, Seiter JM, Coleman JG, Winstead B, Bednar AJ (2014) Analysis of munitions constituents in IMX formulations by HPLC and HPLC-MS. Talanta 128:524–530. doi: 10.1016/j.talanta.2014.02.013 CrossRefGoogle Scholar
  105. 215.
    Salvador CAV, Costa FS (2006) Vaporization lengths of hydrazine fuels burning with NTO. J Propul Power 22(6):1362–1372. doi: 10.2514/1.18348 CrossRefGoogle Scholar
  106. 216.
    Sarangapani R, Ramavat V, Reddy S, Subramanian P, Sikder AK (2015) Rheology studies of NTO-TNT based melt-cast dispersions and influence of particle-dispersant interactions. Powder Technol 273:118–124. doi: 10.1016/j.powtec.2014.12.013 CrossRefGoogle Scholar
  107. 217.
    Sarangapani R, Ramavat V, Reddy TS, Patil RS, Gore GM, Sikder AK (2014) Effect of particle size and shape of NTO on micromeritic characteristics and its explosive formulations. Powder Technol 253:276–283. doi: 10.1016/j.powtec.2013.11.029 CrossRefGoogle Scholar
  108. 218.
    Schoenman L (1995) 4000°F materials for low-thrust rocket engines. J Propul Power 11(6):1261–1267. doi: 10.2514/3.23967 CrossRefGoogle Scholar
  109. 219.
    Schwarzenbach D, Kirschbaum K, Pinkerton AA (2006) Order-disorder twinning model and stacking faults in alpha-NTO. Acta Crystallogr B 62(Pt 5):944–948CrossRefGoogle Scholar
  110. 220.
    Schwarzenbach D, Kirschbaum K, Pinkerton AA (2006) Order-disorder twinning model and stacking faults in α-NTO. Acta Crystallogr, Sect B: Struct Sci B 62(5):944–948. doi: 10.1107/S0108768106024761 CrossRefGoogle Scholar
  111. 221.
    Scott AM, Burns EA, Hill FC (2014) Theoretical study of adsorption of nitrogen-containing environmental contaminants on kaolinite surfaces. J Mol Model 20(8):1–13. doi: 10.1007/s00894-014-2373-7 CrossRefGoogle Scholar
  112. 222.
    Scott AM, Burns EA, Lafferty BJ, Hill FC (2015) Theoretical predictions of thermodynamic parameters of adsorption of nitrogen containing environmental contaminants on kaolinite. J Mol Model 21(2):21CrossRefGoogle Scholar
  113. 223.
    Shekhar H (2012) Studies on empirical approaches for estimation of detonation velocity of high explosives. Cent Eur J Energ Mater 9(1):39–48Google Scholar
  114. 224.
    Shukla MK, Hill F (2014) Dissociative adsorption of 5-nitro-2,4-dihydro-3h-1,2,4-triazol-3-one (NTO) on aluminum-terminated (0001) surface of α-alumina as predicted from plane-wave density functional theory. J Phys Chem C 118(1):310–319. doi: 10.1021/jp408661h CrossRefGoogle Scholar
  115. 225.
    Sinditskii VP et al (2009) Evaluation of decomposition kinetics of energetic materials in the combustion wave. Thermochim Acta 496(1–2):1–12. doi: 10.1016/j.tca.2009.07.004 CrossRefGoogle Scholar
  116. 226.
    Singh G, Felix SP (2003) Studies of energetic compounds, part 29: effect of NTO and its salts on the combustion and condensed phase thermolysis of composite solid propellants, HTPB-AP. Combust Flame 132(3):422–432. doi: 10.1016/S0010-2180(02)00479-0 CrossRefGoogle Scholar
  117. 227.
    Singh G, Felix SP (2003) Studies on energetic compounds. Part 32: crystal structure, thermolysis and applications of NTO and its salts. J Mol Struct 649(1–2):71–83. doi: 10.1016/S0022-2860(02)00717-2 CrossRefGoogle Scholar
  118. 228.
    Singh G, Kapoor IPS, Felix SP, Agrawal JP (2002) Studies on energetic compounds part 23: preparation, thermal and explosive characteristics of transition metal salts of 5-nitro-2,4-dihydro-3H-1,2,4-triazole-3-one (NTO). Propellants, Explos, Pyrotech 27(1):16–22. doi: 10.1002/1521-4087(200203)27:1<16:AID-PREP16>3.0.CO;2-W CrossRefGoogle Scholar
  119. 229.
    Singh G, Kapoor IPS, Mannan SM, Tiwari SK (1998) Studies on energetic compounds Part 7 thermolysis of ring-substituted arylammonium salts of 3-nitro-1,2,4-triazole-5-one (NTO). J Energ Mater 16(2 & 3):101–118. doi: 10.1080/07370659808217507 CrossRefGoogle Scholar
  120. 230.
    Singh G, Kapoor IPS, Mannan SM, Tiwari SK (1998) Studies on energetic compounds. Part 6. Synthesis of ring-substituted arylammonium salts of 3-nitro-1,2,4-triazol-5-one(NTO). J Energ Mater 16(1):31–43. doi:  10.1080/07370659808216092
  121. 231.
    Singh G, Kapoor IPS, Tiwari SK (2000) Studies on energetic compounds (part 18): preparation and kinetics of thermolysis of alkaline earth metal salts of 5-nitro-2,4-dihydro-3H-1,2,4-triazole-3-one (NTO). Indian J Chem Technol 7(5):236–241Google Scholar
  122. 232.
    Singh G, Kapoor IPS, Tiwari SK, Felix SP, Ninan KN, Varghese TL (2002) Studies on energetic compounds. Part 15: transition metal salts of NTO as potential energetic ballistic modifiers for composite solid propellants. J Energ Mater 20(4):309–327. doi: 10.1080/07370650208244826
  123. 233.
    Singh G, Kapoor IPS, Tiwari SK, Prem FS (2000) Studies on energetic compounds. Part 12. Preparation and thermolysis of transition metal salts of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). Indian J Eng Mater Sci 7(3):167–171Google Scholar
  124. 234.
    Singh G, Prem Felix S (2002) Studies on energetic compounds 25. An overview of preparation, thermolysis and applications of the salts of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). J Hazard Mater 90(1):1–17. doi: 10.1016/S0304-3894(01)00349-1 CrossRefGoogle Scholar
  125. 235.
    Singh G, Prem Felix S (2003) Studies on energetic compounds Part 36: evaluation of transition metal salts of NTO as burning rate modifiers for HTPB-AN composite solid propellants. Combust Flame 135(1–2):145–150. doi: 10.1016/S0010-2180(03)00156-1 CrossRefGoogle Scholar
  126. 236.
    Stanley JK, Lotufo GR, Biedenbach JM, Chappell P, Gust KA (2015) Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. Environ Toxicol Chem 34(4):873–879. doi: 10.1002/etc.2890 CrossRefGoogle Scholar
  127. 237.
    Sutton NV, Dubb HE, Bell RE, Lysyj I, Neale BC (1965) Chemical analysis of corrosive oxidizers. II. Instrumental analysis of nitrogen tetroxide. Advan Chem Set 54:231–236CrossRefGoogle Scholar
  128. 238.
    Teipel U, Krober H, Krause HH (2001) Formation of energetic materials using supercritical fluids. Propellants, Explos, Pyrotech 26(4):168–173. doi: 10.1002/1521-4087(200110)26:4<168:AID-PREP168>3.0.CO;2-X CrossRefGoogle Scholar
  129. 239.
    Tuerker L, Atalar T (2006) Quantum chemical study on 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and some of its constitutional isomers. J Hazard Mater 137(3):1333–1344. doi: 10.1016/j.jhazmat.2006.05.015 CrossRefGoogle Scholar
  130. 240.
    Tuerker L, Bayar CC (2012) NTO-picryl constitutional isomers-A DFT study. J Energ Mater 30(1):72–96. doi: 10.1080/07370652.2010.543005 CrossRefGoogle Scholar
  131. 241.
    Underwood CJ, Wall C, Provatas A, Wallace L (2012) New high nitrogen compounds azoxytriazolone (AZTO) and azotriazolone (azoTO) as insensitive energetic materials. New J Chem 36(12):2613–2617. doi: 10.1039/c2nj40800g CrossRefGoogle Scholar
  132. 242.
    Van der Heijden AEDM (1998) Crystallization and characterization of energetic materials. Curr Top Cryst Growth Res 4:99–114Google Scholar
  133. 243.
    Vaullerin M, Espagnacq A, Blaise B (1998) Reparametrization of the BKW equation of state for the triazoles and comparison of the detonation properties of HMX, TNMA, and NTO by means of ab-initio and semiempirical calculations. Propellants, Explos, Pyrotech 23(2):73–76. doi: 10.1002/(SICI)1521-4087(199804)23:2<73:AID-PREP73>3.0.CO;2-M CrossRefGoogle Scholar
  134. 244.
    Vaullerin M, Espagnacq A, Morin-Allory L (1998) Prediction of explosives impact sensitivity. Propellants, Explos, Pyrotech 23(5):237–239. doi: 10.1002/(SICI)1521-4087(199811)<237:AID-PREP237>3.0.CO;2-# CrossRefGoogle Scholar
  135. 245.
    Wallace L, Cronin MP, Day AI, Buck DP (2009) Electrochemical method applicable to treatment of wastewater from nitrotriazolone production. Environ Sci Technol 43(6):1993–1998. doi: 10.1021/es8028878 CrossRefGoogle Scholar
  136. 246.
    Walsh MR et al (2014) Energetic residues from the detonation of IMX-104 insensitive munitions. Propellants, Explos, Pyrotech 39(2):243–250. doi: 10.1002/prep.201300095 CrossRefGoogle Scholar
  137. 247.
    Walsh MR et al (2013) Characterization of PAX-21 insensitive munition detonation residues. Propellants, Explos, Pyrotech 38(3):399–409. doi: 10.1002/prep.201200150 CrossRefGoogle Scholar
  138. 248.
    Williams GK, Brill TB (1995) Thermal decomposition of energetic materials. 68. Decomposition and sublimation kinetics of NTO and evaluation of prior kinetic data. J Phys Chem 99(33):12536–12539. doi: 10.1021/j100033a027 CrossRefGoogle Scholar
  139. 249.
    Xie Y, Hu R, Wang X, Fu X, Zhu C (1991) Thermal behavior of 3-nitro-1,2,4-triazol-5-one and its salts. Thermochim Acta 189(2):283–296CrossRefGoogle Scholar
  140. 250.
    Xie Y, Hu R, Yang C, Feng G, Zhou J (1992) Studies on the critical temperature of thermal explosion for 3-nitro-1,2,4-triazol-5-one (NTO) and its salts. Propellants, Explos, Pyrotech 17(6):298–302CrossRefGoogle Scholar
  141. 251.
    Yang G, Nie F (2006) Preparation and characterization of core/shell structure of HMX/NTO composite particles. Sci Technol Energ Mater 67(2):77–81Google Scholar
  142. 252.
    Yau AD, Byrd EFC, Rice BM (2009) An investigation of KS-DFT electron densities used in atoms-in-molecules studies of energetic molecules. J Phys Chem A 113(21):6166–6171. doi: 10.1021/jp9010845 CrossRefGoogle Scholar
  143. 253.
    Ye S, Tonokura K, Koshi M (2003) Energy transfer rates and impact sensitivities of crystalline explosives. Combust Flame 132(1/2):240–246. doi: 10.1016/S0010-2180(02)00461-3 CrossRefGoogle Scholar
  144. 254.
    Yim W-L, Z-f Liu (2001) Application of Ab initio molecular dynamics for a priori elucidation of the mechanism in unimolecular decomposition: the case of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). J Am Chem Soc 123(10):2243–2250. doi: 10.1021/ja0019023 CrossRefGoogle Scholar
  145. 255.
    Yun S-S, Kim J-K, Kim C-H (2006) Lanthanide complexes of some high energetic compounds, crystal structures and thermal properties of 3-nitro-1,2,4-triazole-5-one (NTO) complexes. J Alloys Compd 408–412:945–951. doi: 10.1016/j.jallcom.2004.11.087 CrossRefGoogle Scholar
  146. 256.
    Zbarsky V, Basal A, Yudin N, Zhilin VF (2003) Study on solubility of 2,4-dihydro-3H-1,2,4-triazol-3-one and 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one in diluted acid. International Annual Conference ICT 34th:139/1–139/8Google Scholar
  147. 257.
    Zeman S (1997) Kinetic compensation effect and thermolysis mechanisms of organic polynitroso and polynitro compounds. Thermochim Acta 290(2):199–217. doi: 10.1016/S0040-6031(96)03078-X CrossRefGoogle Scholar
  148. 258.
    Zeman S (2003) New aspects of impact reactivity of polynitro compounds. Part IV. Allocation of polynitro compounds on the basis of their impact sensitivities. Propellants, Explos, Pyrotech 28(6):308–313. doi: 10.1002/prep.200300021
  149. 259.
    Zhang TL, Hu RZ, Li FP (1994) Structural characterization and thermal decomposition mechanisms of alkaline earth metal (Mg, Ca, Sr, and Ba) salts of 3-nitro-1,2,4-triazol-5-one. Thermochim Acta 244(1–2):185–194Google Scholar
  150. 260.
    Zhu W et al (2015) Shaping single-crystalline trimetallic Pt-Pd-Rh nanocrystals toward high-efficiency C-C splitting of ethanol in conversion to CO2. ACS Catal 5(3):1995–2008. doi: 10.1021/cs5018419 CrossRefGoogle Scholar
  151. 261.
    Zhurova EA, Pinkerton AA (2001) Chemical bonding in energetic materials: beta-NTO. Acta Crystallogr B 57(Pt 3):359–365CrossRefGoogle Scholar
  152. 262.
    Zhurova EA, Pinkerton AA (2001) Chemical bonding in energetic materials: β-NTO. Acta Crystallogr, Sect B: Struct Sci B 57(3):359–365. doi: 10.1107/S0108768100020048 CrossRefGoogle Scholar
  153. 263.
    Zhurova EA, Tsirelson VG, Stash AI, Yakovlev MV, Pinkerton AA (2004) Electronic energy distributions in energetic materials: NTO and the biguanidinium dinitramides. J Phys Chem B 108(52):20173–20179. doi: 10.1021/jp0470997 CrossRefGoogle Scholar

Copyright information

© US Government (outside the USA) 2018

Authors and Affiliations

  • Dabir S. Viswanath
    • 1
    • 2
    Email author
  • Tushar K. Ghosh
    • 3
  • Veera M. Boddu
    • 4
  1. 1.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  2. 2.Nuclear Engineering Teaching LaboratoryCockrell School of EngineeringAustinUSA
  3. 3.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  4. 4.Environmental Processes BranchUS Army Engineer Research and Development CenterChampaignUSA

Personalised recommendations